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Recap from last session

Center of mass coordinates (derivation)
* (Vy,Vp) — (Vem»Wag)

Vy = Ve + UWyp /My

Vg = Ve — UWap/Mp
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* Exin = E(mA T mB)Ucm T EMUAB

E kin, cm + Lk kin, AB
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Recap from last session
Center of mass coordinates (derivation)
* distribution of relative velocities:

f(vAx' Vay,»Vaz) VBx)» VBy, sz)dvAxdvAydvAzdexdeydez
* transformed to c.m. system
* integrated out c.m. part

* f ( VaBx)» VABy:» VABz)dVAB,deAB,ydUAB,z
* transformed to spherical coordinates
* integrated out spherical part (isotropic)
3 _Iw,qu
o f(vyg)dv,g = 4m (znZ T)Z v, e 2kBT dy,, aM.B.distribution for
B particles of mass u
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Recap from last session

Bimolecular collisions — reactive hard spheres (A + B — Products)

= Zup = 045{UaB) PaPB

)

k(T) [A][B]

PA _ _PB

e |f all collisions were reactive: — — "

* rate is much too high
» temp. dependence wrong: k(T) o« /T vs Arrhenius: k(T) « e Fact/kBT

e ldea: k(T) = o45{uyg) — k(T) = (0r(E) uyg)

* we again work in the c.m. frame



Recap from last session

Bimolecular collisions — reactive hard spheres (A + B — Products)
v, =V and d =%(dA + dp)
* decomposed into v, and v

* angle 0 betweenvand v,

* only v, can drive reaction

1
conlyE, = E,uvf relevant

* introduced impact parameter b
* smaller b = larger v,




Recap from last session

Bimolecular collisions — reactive hard spheres (A + B — Products)
°vAB:v and d:%(dA‘l‘dB)

* introduced impact parameter b

* b > d-> noreaction ®
as no component of energy directed

towards collision partner

v
e b = 0 2 head-on-collision! © ©<_©

all the energy directed towards collision partner



Recap from last session

Bimolecular collisions — reactive hard spheres (A + B — Products)
°vAB:v and d:%(dA‘l‘dB)

* introduced impact parameter b
* smaller b = larger v,

* Energy fraction is

B = % = cos* @
E % b
. 2 b?
=1—-sin“0=1- — +
* isolating for E | yields

Ele(l—Z—z)!ZE*




* For a collision, we need a minimum energy E*
|

b2\ ° .
SO E,=E(1-2)2E
* The reaction probability then is:

(0 ifE, <E”
PR(EL)_{p ifE, > E*

* The probability p we can call
the steric factor

(like a fit parameter)

<z 0

A
* How does a plot of Py (E, ) look like?



I
2

E=E(1-2)>F

d2
(0 ifE, <E”*
Pr(EL) _{p ifE, > E*
Pr(E,)
p_|7
0 - FE

E*
does not look super realistic,
but it’s a start...




* Let’s define a reaction cross section oi(E), taking into account the
necessary energy and b for a reactive collision:

* 0z (E) can be understood as surface area A of an infinitesimally thin
ring with: A = 2mb db

with radius b and thickness db

db

* Areaction occurs only,
if b not larger than a maximum value
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* 0z (E) can be understood as surface area A of an infinitesimally thin
ring with: A = 2mb db

: db
* Areaction occurs only,

if b not larger than a maximum value

* Integrating over all these possible
b‘s gives us the reaction cross-section

I.e., the surface area of the disk:

or(E) = [ 2nb db o

A
or(E) = fooo Pr(E,) - 2mb db U
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ox(E) = [" Pr(E,) - 2mb db

reaction cross-section for
reactive hard spheres

2

e From E, = E 1—b— > E* follows
1 d?2

Pr(E})

* inserting as new integral boundary yields

-
d [1-——
or(E)= [V “p-2mbdb

0

g2 _E”
=nd“p(l ——)

-

or more generally: or(E) =4

;
0 ifE < E*

*

.

nd’p(1 ) ifE = E°

~N

J

|
0 .

E*

E*
bSd\/l_E:bmax
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4 ) 0 )
B _ fE<E"

=E) =1 ra2p(1 ~ =) ifE = E°

N : J

* How does a plot of this look?

or(E)

for large E, we approach hard-sphere model!

E*

(multiplied with steric correction factor) ©

Pr(E})

|
0 .

E*

E,

What does this
limit mean?

Hard-sphere
collision cross-

section
X

Steric factor
(probability <1) p
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r N Pr(E )

r
0 : R
_ , TE<E

or (E) " |md*p(1—=) itE > E* P

. ) Y,
0 " E
* 1
* How do we get to the desired rate constant k(T)? E

* How are relative energies distributed for such collisions?

* To obtain k(T) = (oxr(E)Vv(E))
we average over the thermal population, given by M.B. distribution F (v)
of relative speeds from before:

| W

uv?

k(T) = [ og(B)v - F(w)dv = f,” op(E)v - 4m (—2—)* vZe ka7 dv

2tkgT

* What do we first have to do to solve this?
* bring all to same dependence, so coordinate transform of vto E
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4 ( 0 I
oo (E) = . FE<E"
R nd’p(1—=) ifE > E”
\ \ J
wo\z , -t
k(T) = f 6o (E)v - F(v)dv = f 6. (E)v - 4 (anBT) p2e 2K5T dy
0 0

* What do we first have to do to solve this?
* bring all to same dependence, so transformation of vto E

e use E = ,Lw and dv = to obtain

Uv
1

k(T) = (Wk T) [ Eog(E)e Ko dE
_ 1 8 )2 2 (forE < E*,
 kgT (nukBT) f md“p(E — E7)e kBTdE or(E) is zero)
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1 E

_ 1 8 2 [© 2 %\, koT
k(T) = kT (n.ukBT) fE* nd"p(E —E")e “sTdE
* integration, using fooo xe adx = a® vyields
1 E*
o (8kpT\z — What do these
k(T) =md ( U ) pe *5' terms mean?

hard-sphere cross section X mean velocity X Arrhenius eq.

* Arrhenius pre-factor A now has become a product of correction
terms, incl. steric factor p < 1, accounting for the fact that even at
sufficient energy, not every collision might be reactive due to
geometric limitations of molecular orientations .



5.7 Dynamics of Bimolecular Reactions -
Two-Body Classical Scattering

* Question: At what angle do collision partners depart after a collision?

* Or in c.m. frame: At what angle does the pseudo-particle exit the
horizontal line?

* We want to become more precise in not just knowing the reaction
cross section overall, but also for a specific angle

* Why might this extra complication be a useful thing to know?

Because reaction mechanisms can often be derived by knowing these
angles!!!

- Let’s derive differential reaction cross-sections as function of angle
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 We assume particles A & B collide and use the center of mass frame
» assume they interact through a central potential U(r)
* 7 Is distance between particles

* total energy of collision partners is sum of kinetic, potential and internal
energy:.

_1 2 1 2 , ,
E = SMvj +-omvg + U(r) + E, internal T E, internal
* we can distinguish elastic, inelastic, and reactive collisions

* How could an interaction potential look like?
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A possible (typical) central potential U(r)

| | | | |

1.0 - _
repulsive

05— _

3 0.0

05 U(r) | attractive

10 _

| | | | | |

0.5 1.0 1.5 2.0 2.5 3.0



* Fixed center of mass coordinate system, central spherical potential U(r)
* Before collision: assume particles approach from infinite distance

\
\

dS$) = sin Xdxdo

u=mymg/(my + mg) \ /9
dr
A

v:|vA_vB|=E
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U(r): attractive from the distance, repulsive near center // %



Oc

describes the minimum
\ distance the pseudo-particle
(e, 6:)  can approach the origin at,
I.e., the critical point for a
given trajectory 6 (1)



* Fixed center of mass coordinate system, central spherical potential U(r)
* Before collision: assume particles approach from infinite distance

\
\

dS$) = sin Xdxdo

u=mymg/(my + mg) \ /9
dr
A
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* The radial velocity at the critical pointis: 7., = 0
* So don’t have radial velocity here, only tangential velocity

* Trajectory (like potential U(r)) is symmetrical around center
p=mymg/(my+mg) \

\

\
dr \\
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* What about azimuthal angle ¢?
* but we got a spherical potential U(r)

* ¢ does not change during scattering, as trajectory confined to a plane! ©
u=mymg/(my + mg) \ //
| | dr \ Z
D= vA — ‘UB —_ \
dt 7
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* Deflection angle y will be relevant to derive differential cross-section
* From before: (total) reaction cross-section op (= surface area of full disc)

* How large is the disk that will lead to scattering into one specific
deflection angle y?

* It’s a differential (part) of the total o, for a given // "’@
' 7
solid angle 2 \ X 0
% Zi ¢
7% 6 '\ T é
// % b 9c /
1 8 ¥ N\ 0 'S 7 é
) ' 0
Ay b (7. 0c) o
,, O /
db

r(t) =|ry—1p




* How large is the disk that will lead to scattering into one specific
deflection angle y?

* The differential cross section I is a differential (part) of the total gp that
leads to scattering into a specific solid angle () .

@,

do =77

IR —_— — e 7 %
aq) \ X é
v \ 2
_ Zi Z
// '&‘ b ¢ ¢ /
g é Y N\ 0| \“ 7 é
' /
y . 00 .
2 é %
i 0/
d r(t) =|ry —1rp] 0 //
. 4

* What does gp depend on?

N

N



* The differential cross section Iy is a differential (part) of the total oy that
. . . ce . do
leads to scattering into a specific solid angle () : I = —

dQ
 What does g depend on? Velocity v, impact param. b, quantum state (I')
UR(U,F):fPR(U,b,F) 2mbdb "’//,/
= | Ir(x, p; v, ryda ' 2
\ X 7
% Zi 4
A = B
7% b 0, 7
g % Y N\ a \" 7 %
4 7 /
'l," Z ’) ¢ (rc’ Hc) % Z
< %
f -

total particle flux

surface area of full ring: 2rhdp Mustbe conserved
(what enters must come out!)




* To derive the partial scattering cross-section I we need to find the
deflection function y(b)

* Total energy of particle (Cartesian coordinates) moving in xz plane is:

E = %w’cz + %uz’z + U(r) Transform to polar coordinates:

=

E=-p(rcos0)’ +-pu(rsing)* + U(r) = - < %
v ) 7 ’
7.",> ‘ . - 7 %
g % b °0 Oc 2
1 0 ¥ N\ 0) =0 2 é
NI 7 é
41/ (7%, 6c) o
Z é %
i -
@ r(t) =|ry —rg] //
E:l‘u‘f"2+1,u7‘29.2+U(7‘) /

X 2 2 // 2




E = %,m’*z + %,urzéz + U(r) What are the different parts of this sum?

 radial kin. energy & angular motion associated energy (& potential energy)

L1 : : : :
* or could write: EI w?, with moment of inertia I & angular velocity w
D

1 2 _
v 2 o
G
//"a
78’
] _V A\
4 Y |
WK,
(/

N
\\
N\

d r(t) =|ry —1rp]

X L: angular momentum



1 . 1 : .
E = gl“”z T 5#7‘292 + U(r) we canrewrite as
L? , |
2 + U(r), L is a const., as angular momentum is conserved

E=%uv2+

* As particle approaches the center, r becomes smaller & rotzs

yhal energy
goes up! It experiences a new, effective potential: P Z
Zi

L2 \

_ Z
G TR
(o -7 7
/// % b 8. Z
R m—— e
' 7
. ",,'/// ') % (rc’ 0.) % é

; Z
1 -
b 1r(t) =|r, —rp| é 7
A B . 1.2 é /
rotational energy term —— 2. /)

X 2UT
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Is called centrifugal barrier



LZ
= + U(r)

* How do U(r) and U, ¢¢ look plotted?

Uerr =

1.0

centrifugal
barrier

/

05

-1.0 _

0.5 1.0 1.5 2.0 2.5 3.0
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E——uv + +U(r)

MTZ
* How do we calculate L?
L = |rxp| what’s the momentum?
* We derive it from the incoming particle’s velocity vy, and b orthogonal to it:
L = |rXp| = uvyb
* We want to derive the trajectory 6 (r)
* we can relate 6 to the angular momentum:

= ure— rearrange to df = Fd

* Now let’s solve the above differential equation:

E=1 (@)2+ ~ LU dt
=—pu(— e r), rearranged to

1 which we can substitute into
)] dr  our expression for d6 -

dt = —E(E—U(r) _

2UT?



1
L [2 L \] 2
do = _F [; (E — U(T) — 2[11"2)] dr
* This is great. Integrating this gives us our trajectory 6 (r)

[and from that, we can then get our desired deflection function x(b)]
* To make life easier, one substitution is still handy to do first:

* We know that L = uvyb and use E = %,uvg

* meaning L = b(Z,uE)%
* Did we not over-simplify here by reducing E to just a kinetic energy term?!
* No: at infinite distance (r - o, v = v,) the potential energy is zero:
U(r > o) =0
LZ

moreover, the rotational energy must be zero: =0
2p(r—00)?

* Substitution of this L expression yields -,




* Finally, we integrate this:

r

9(r)=fd9=—bf ar :
0

215
00 2 ll_U(T) 7122 2

* From this, we will be able to derive the deflection function and in the
end, the differential scattering cross-section ... next time! ©
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