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Recap from last session
Center of mass coordinates (derivation)
• !!, !" → (!#$ , %!")

!! = !#$ + )%!"/+!
!" = !#$ − )%!"/+"

• E%&' = (
) +! ++" .#$) + (

) ).!"
)

= /kin, cm + /kin, AB
conserved! available for reaction

22



Recap from last session
Center of mass coordinates (derivation)
•  distribution of relative velocities:
 7 .!* , .!+ , .!, , ."* , ."+ , .", 8.!*8.!+8.!,8."*8."+8.",
• transformed to c.m. system
• integrated out c.m. part

•  7 	.!"* , .!"+ , .!", 8.!",*8.!",+8.!",,
• transformed to spherical coordinates
• integrated out spherical part (isotropic)

•  7 .!" 8.!" = 4; .
)/0!1

"
# .!") 	 <

2$%&!
#

#'!( 	 8.!"
33

a M.B. distribution for 
particles of mass = 



Recap from last session
Bimolecular collisions – reactive hard spheres (> + ? → @AB8CDEF)
• If all collisions were reactive: − 3&

45 = − 3!
45 = G!" = H!" C!" 	 I!I"

          J K 	 > [?]
• rate is much too high
• temp. dependence wrong:  J K ∝ K vs Arrhenius: J K ∝ <26)*+/0!1

• Idea: J K = H!" C!" 	 → 	 J K = H8 / 	C!"

• we again work in the c.m. frame
44
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Recap from last session
Bimolecular collisions – reactive hard spheres (> + ? → @AB8CDEF)

• !!" = !  and  8 = (
) (8! + 8")

• decomposed into !∥ and !: 
• angle O between ! and !:
• only !: can drive reaction

• only /: = (
) ).:

)   relevant

• introduced impact parameter P
• smaller Q à larger !:
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Recap from last session
Bimolecular collisions – reactive hard spheres (> + ? → @AB8CDEF)

• !!" = !  and  8 = (
) (8! + 8")

• introduced impact parameter Q

• Q > 8à no reaction L
   as no component of energy directed
   towards collision partner

• Q = 0	à head-on-collision! J
   all the energy directed towards collision partner

66
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Recap from last session
Bimolecular collisions – reactive hard spheres (> + ? → @AB8CDEF)

• !!" = !  and  8 = (
) (8! + 8")

• introduced impact parameter Q
• smaller Q à larger !:
• Energy fraction is
6,
6 = ;,#

;# = cos) O	
									= 1 − sin) O = 1 − <#

4#
• isolating for /: yields

 /:= / 1 − <#
4#  ≥ /∗ 77

!
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θ

• For a collision, we need a minimum energy  /∗ 

 so  	/:= / 1 − <#
4#  ≥ /∗

• The reaction probability then is:

   @8 /: = X0	Y 	
if	/: < /∗
if	/: ≥ /∗

• The probability [ we can call
                      the steric factor
                   (like a fit parameter)

• How does a plot of @8 /:  look like?

8

O

!
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θ

 	/:= / 1 − <#
4#  ≥ /∗

       @8 /: = X0	Y 	
if	/: < /∗
if	/: ≥ /∗

8

O

!

does not look super realistic,
but it’s a start…

/:

@8 /:

/∗

Y

0
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θ

• Let’s define a reaction cross section H8(/), taking into account the 
necessary energy and Q for a reactive collision:
• H8(/) can be understood as surface area > of an infinitesimally thin 

ring with:  A = 2;Q	8Q 
   with radius Q and thickness 8Q

• A reaction occurs only,
if Q not larger than a maximum value

Q

8Q
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θ

• H8(/) can be understood as surface area > of an infinitesimally thin 
ring with:  A = 2;Q	8Q 

• A reaction occurs only,
if Q not larger than a maximum value
• Integrating over all these possible
 Q‘s gives us the reaction cross-section,
 i.e., the surface area of the disk:

 H8 / = ∫>
<,$?* 2;Q	8Q     or

  H8 / = ∫>
@@8 /: ⋅ 2;Q	8Q

Q

8Q
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H8 / = ∫>
@@8 /: ⋅ 2;Q	8Q

      reaction cross-section for
          reactive hard spheres

• From /:= / 1 − <#
4#  ≥ /∗ follows  Q ≤ 8 1 − 6∗

6 = Q$?*
• inserting as new integral boundary yields

  H8 / = ∫>
4 (2.

∗
. Y ⋅ 2;Q8Q = ;8)Y(1 − 6∗

6 )

or more generally: H8 / = `
0	

;8)Y(1 − 6∗
6 )
	 if	/ < /∗

if	/ ≥ /∗ 

/:

@8 /:

/∗

Y

0
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H8 / = `
0	

;8)Y(1 − 6∗
6 )
	 if	/ < /∗

if	/ ≥ /∗ 

• How does a plot of this look?
/:

@8 /:

/∗

Y

0

;8)Y

 

πd2p

H8 /

/∗ /

What does this 
limit mean?

Hard-sphere 
collision cross-

section
×

Steric factor 
(probability <1) Yfor large E, we approach hard-sphere model!

(multiplied with steric correction factor) J



14

H8 / = `
0	

;8)Y(1 − 6∗
6 )
	 if	/ < /∗

if	/ ≥ /∗ 

• How do we get to the desired rate constant  J K ?
• How are relative energies distributed for such collisions?
• To obtain J K = H8(/).(/)
   we average over the thermal population, given by M.B. distribution a .
   of relative speeds from before:

    J K = ∫>
@ H8 / . ⋅ a . 8. = ∫>

@ H8 / . ⋅ 4; .
)/0!1

"
# .)<2

$%#
#'!(8.

• What do we first have to do to solve this?
• bring all to same dependence, so coordinate transform of . to /

/:

@8 /:

/∗

Y

0
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H8 / = `
0	

;8)Y(1 − 6∗
6 )
	 if	/ < /∗

if	/ ≥ /∗ 

J K = b
>

@

H8 / . ⋅ a . 8. = b
>

@

H8 / . ⋅ 4; )
2;J"K

A
) .)<2

.;#
)0!18.

• What do we first have to do to solve this?
• bring all to same dependence, so transformation of . to / 
•  use / = (

) ).
)	 and 8. = 46

.; to obtain

  J K = (
0!1

B
/.0!1

/
# ∫>

@/H8 / <2
.

'!(8/

  = (
0!1

B
/.0!1

/
# ∫6∗

@ ;8)Y(/ − /∗)<2
.

'!(8/ (for ! < !∗	,	
	%# !  is zero)
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J K = (
0!1

B
/.0!1

/
# ∫6∗

@ ;8)Y(/ − /∗)<2
.

'!(8/ 

• integration, using      ∫>
@ c<2

0
)8c = d)    yields

   J K = ;8) 	 B0!1
/.

/
# 	 Y	<2

.∗
'!( 

 hard-sphere cross section ×	mean velocity ×	 Arrhenius eq.
• Arrhenius pre-factor > now has become a product of correction 

terms, incl. steric factor Y < 1, accounting for the fact that even at 
sufficient energy, not every collision might be reactive due to 
geometric limitations of molecular orientations

What do these 
terms mean?



5.7 Dynamics of Bimolecular Reactions – 
Two-Body Classical Scattering
• Question: At what angle do collision partners depart after a collision?
• Or in c.m. frame: At what angle does the pseudo-particle exit the 

horizontal line?
• We want to become more precise in not just knowing the reaction 

cross section overall, but also for a specific angle
• Why might this extra complication be a useful thing to know?

Because reaction mechanisms can often be derived by knowing these 
angles!!! 
à Let’s derive differential reaction cross-sections as function of angle

17
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• We assume particles > & ? collide and use the center of mass frame
• assume they interact through a central potential f A  
• A is distance between particles

• total energy of collision partners is sum of kinetic, potential and internal 
energy:

  / = (
)+.!

) + (
)+."

) + f A + /!, internal + /", internal

• we can distinguish elastic, inelastic, and reactive collisions

• How could an interaction potential look like?
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A possible (typical)  central potential f A  

attractive

repulsive
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• Fixed center of mass coordinate system, central spherical potential f A
• Before collision: assume particles approach from infinite distance

! = !! − !" = 8g
8E

) = +!+"/(+! ++") 

g E = g! − g"

(A#, O#)

f A : attractive from the distance, repulsive near center

h

i
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describes the minimum 
distance the pseudo-particle 
can approach the origin at,
i.e., the critical point for a 
given trajectory O(A)

!
!! !!

(#!, !!)
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• Fixed center of mass coordinate system, central spherical potential f A
• Before collision: assume particles approach from infinite distance

! = !! − !" = 8g
8E

) = +!+"/(+! ++") 

g E = g! − g"

(A#, O#)

f A : attractive from the distance, repulsive near center

h

i
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• The radial velocity at the critical point is:  ȦCDC* = 0
• So don’t have radial velocity here, only tangential velocity
• Trajectory (like potential f A ) is symmetrical around center

! = !! − !" = 8g
8E

) = +!+"/(+! ++") 

g E = g! − g"

(A#, O#)

f A : attractive from the distance, repulsive near center

h

i
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• What about azimuthal angle h?
• but we got a spherical potential f A
• h	does not change during scattering, as trajectory confined to a plane! J

! = !! − !" = 8g
8E

) = +!+"/(+! ++") 

g E = g! − g"

(A#, O#)

f A : attractive from the distance, repulsive near center

h

i
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g E = g! − g"

(A#, O#)h

i

• Deflection angle i will be relevant to derive differential cross-section
• From before: (total) reaction cross-section H8   (= surface area of full disc)
• How large is the disk that will lead to scattering into one specific 

deflection angle i?
• It’s a differential (part) of the total H8  for a given
   solid angle k !
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g E = g! − g"

(A#, O#)h

i

• How large is the disk that will lead to scattering into one specific 
deflection angle i?
• The differential cross section l8 	is a differential (part) of the total H8  that 

leads to scattering into a specific solid angle k :

     !! = "#
"$

• What does H8  depend on?

!
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g E = g! − g"

(A#, O#)h

i

• The differential cross section l8 	is a differential (part) of the total H8  that 
leads to scattering into a specific solid angle k :  l8 = 4E

4F
• What does H8  depend on? Velocity ., impact param. Q, quantum state (Γ)
  H8 ., n = ∫@8 ., Q; n 	2;Q8Q 
       = ∬l8(i, h; ., n)8k

!

surface area of full ring: 2;Q8Q 
total particle flux
must be conserved
(what enters must come out!)



28

g E = g! − g"

(A#, O#)h

i

• To derive the partial scattering cross-section l8  we need to find the  
deflection function i Q
• Total energy of particle (Cartesian coordinates) moving in xz plane is:

    / = (
) )ċ

) + (
) )Ġ

) + f A
    / = (

) ) ̇(A cos O)) + (
) ) ̇(A sin O)) + f A = ⋯ 

!

z

x

Transform to polar coordinates:

…
/ = 1

2)Ȧ
) + 12)A

)Ȯ) + f A
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g E = g! − g"

(A#, O#)h

i

/ = (
) )Ȧ

) + (
) )A

)Ȯ) + f A    What are the different parts of this sum?
• radial kin. energy  & angular motion associated energy (& potential energy)

• or could write: (
) l	s

), with moment of inertia l   &   angular velocity s
• i.e.:    rotational energy      …which we can rewrite as

   (
) l	s

) = G#
)H!

z

x t: angular momentum
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g E = g! − g"

(A#, O#)h

i

/ = (
) )Ȧ

) + (
) )A

)Ȯ) + f A      we can rewrite as

    / = (
) ).

) + G#
).C# + f A , t	is a const., as angular momentum is conserved

• As particle approaches the center, A becomes smaller & rotational energy 
goes up! It experiences a new, effective potential:

        fIJJ = G#
).C# + f A!

z

x
rotational energy term G#

).C# 
is called centrifugal barrier 
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fIJJ = G#
).C# + f A

• How do f A  and fIJJ  look plotted?

centrifugal
barrier
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/ = (
) ).

) + G#
).C# + f A

• How do we calculate t?
    t = A×Y   what’s the momentum?
• We derive it from the incoming particle’s velocity .> and Q orthogonal to it:
    t = A×Y = ).>Q 
• We want to derive the trajectory O A  
• we can relate O to the angular momentum:

    t = )A) 4K45   rearrange to  8O = G
.C# 8E 

• Now let’s solve the above differential equation:

  / = (
) )

4C
45

)
+ G#

).C# + f A , rearranged to

 8E = − )
. / − f A − G#

).C#
2/# 8A

which we can substitute into 
our expression for 8O 
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8O = − G
.C#

)
. / − f A − G#

).C#
2/# 8A

• This is great. Integrating this gives us our trajectory O A  
   [and from that, we can then get our desired deflection function χ b ]
• To make life easier, one substitution is still handy to do first:

• We know that t = ).>Q and use  / = (
) ).>

)

• meaning      t = Q 2)/
/
# 

• Did we not over-simplify here by reducing / to just a kinetic energy term?!
• No: at infinite distance (A → ∞ , . = .>) the potential energy is zero:
    f A → ∞ = 0

             moreover, the rotational energy must be zero: G#
).(C→@)# = 0 

• Substitution of this t expression yields
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8O = −Q 8A

A) 1 − f A
/ − Q

)
A)

(
)

• Finally, we integrate this:

O A = b
>

K

8O = −Q b
@

C
8A

A) 1 − f A
/ − Q

)
A)

(
)

• From this, we will be able to derive the deflection function and in the 
end, the differential scattering cross-section … next time! J


