

Kinetics & Dynamics of Chemical Reactions

Course CH-310

Prof. Sascha Feldmann

Recap from last session

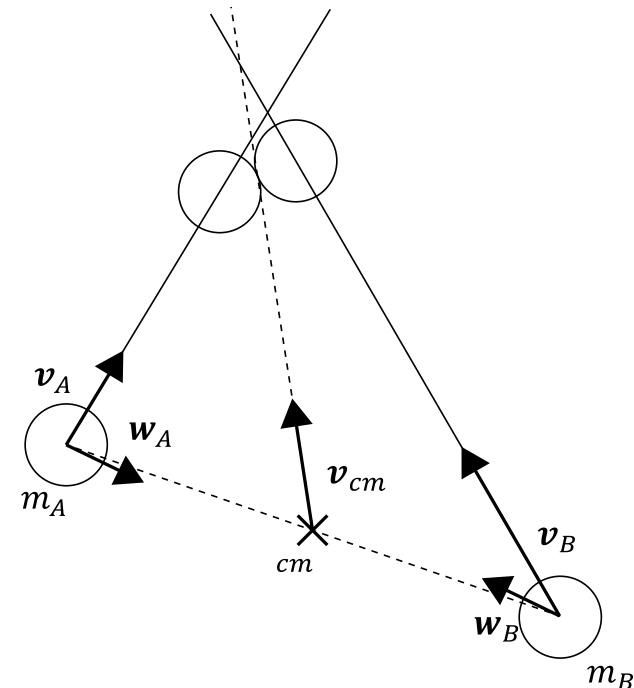
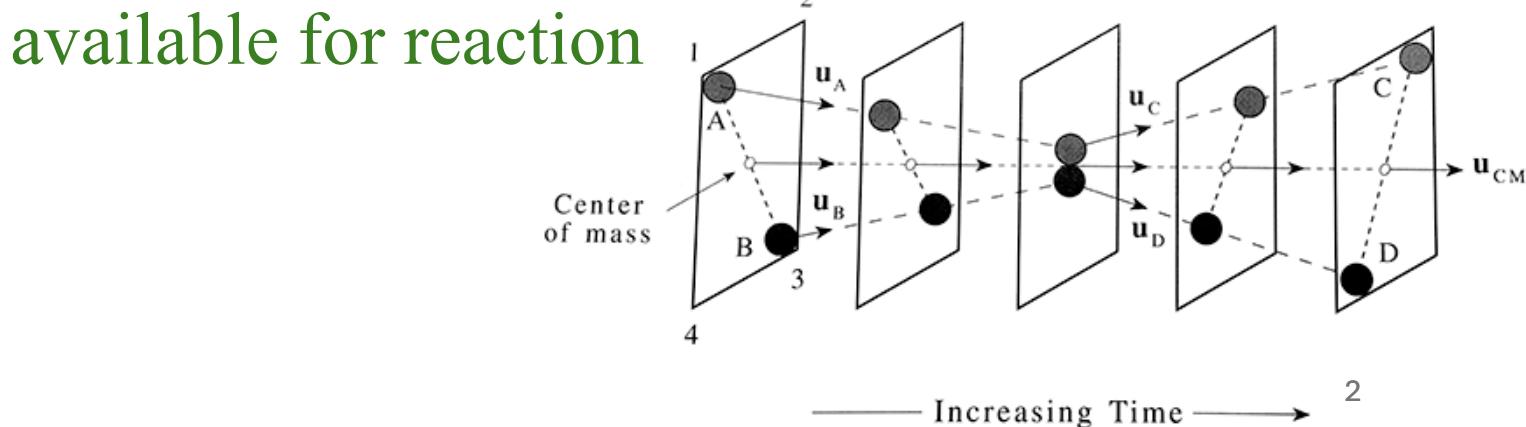
Center of mass coordinates (derivation)

- $(\mathbf{v}_A, \mathbf{v}_B) \rightarrow (\mathbf{v}_{cm}, \mathbf{w}_{AB})$

$$\mathbf{v}_A = \mathbf{v}_{cm} + \mu \mathbf{w}_{AB} / m_A$$

$$\mathbf{v}_B = \mathbf{v}_{cm} - \mu \mathbf{w}_{AB} / m_B$$

- $E_{kin} = \frac{1}{2} (m_A + m_B) \mathbf{v}_{cm}^2 + \frac{1}{2} \mu \mathbf{v}_{AB}^2$
= $E_{kin, cm}$ + $E_{kin, AB}$
conserved! available for reaction



Recap from last session

Center of mass coordinates (derivation)

- distribution of relative velocities:

$$f(v_{Ax}, v_{Ay}, v_{Az}, v_{Bx}, v_{By}, v_{Bz}) dv_{Ax} dv_{Ay} dv_{Az} dv_{Bx} dv_{By} dv_{Bz}$$

- transformed to c.m. system
- integrated out c.m. part
- $f(v_{ABx}, v_{ABy}, v_{ABz}) dv_{AB,x} dv_{AB,y} dv_{AB,z}$
- transformed to spherical coordinates
- integrated out spherical part (isotropic)

$$\bullet f(v_{AB}) dv_{AB} = 4\pi \left(\frac{\mu}{2\pi k_B T}\right)^{\frac{3}{2}} v_{AB}^2 e^{-\frac{\mu v_{AB}^2}{2k_B T}} dv_{AB}$$

a M.B. distribution for particles of mass μ

Recap from last session

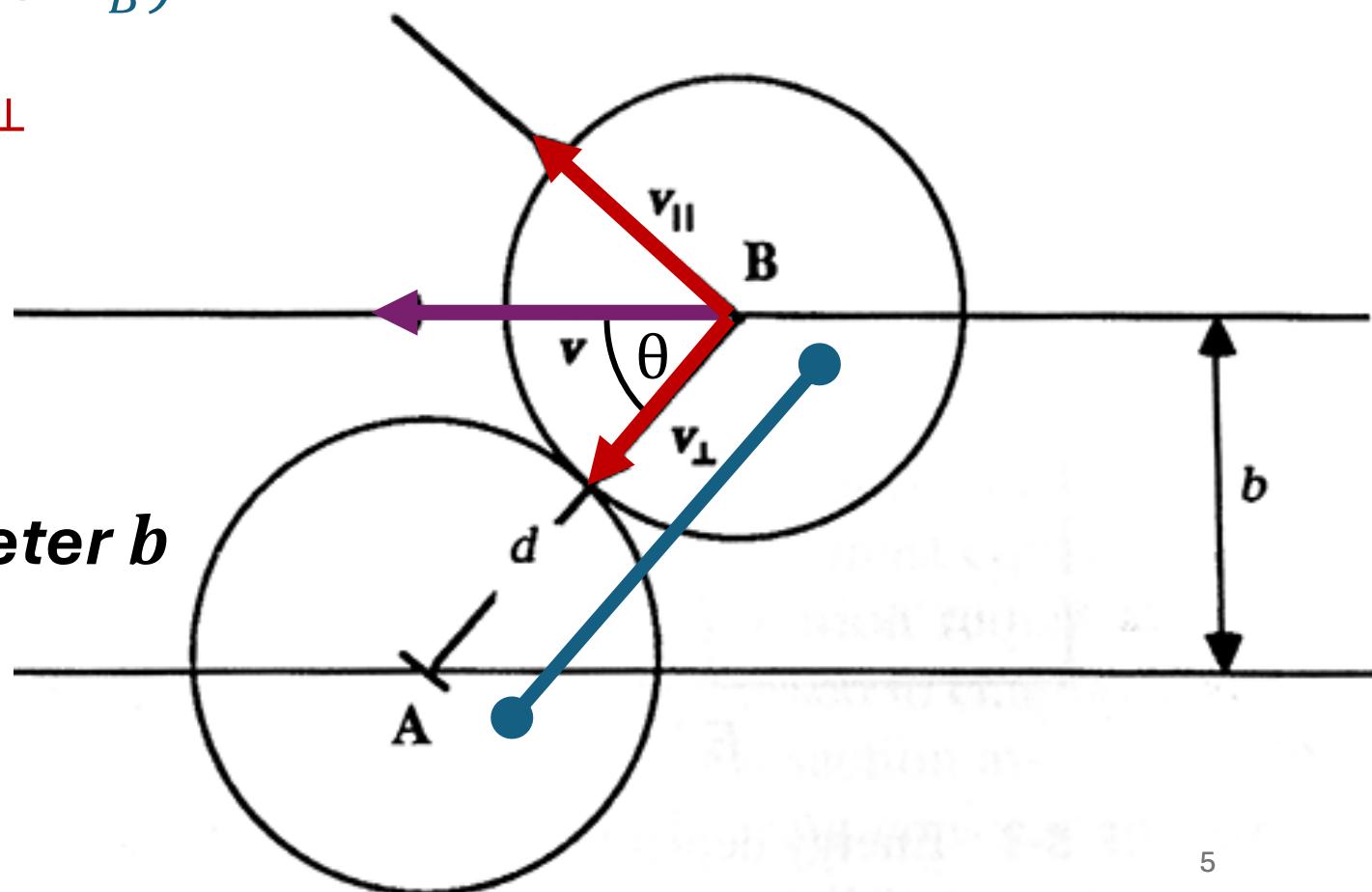
Bimolecular collisions – reactive hard spheres ($A + B \rightarrow \text{Products}$)

- If *all* collisions were reactive: $-\frac{\rho_A}{dt} = -\frac{\rho_B}{dt} = Z_{AB} = \sigma_{AB} \langle u_{AB} \rangle \rho_A \rho_B$
$$k(T) [A][B]$$
- rate is much too high
- temp. dependence wrong: $k(T) \propto \sqrt{T}$ vs Arrhenius: $k(T) \propto e^{-E_{act}/k_B T}$
- Idea: $k(T) = \sigma_{AB} \langle u_{AB} \rangle \rightarrow k(T) = \langle \sigma_R(E) u_{AB} \rangle$
- we again work in the c.m. frame

Recap from last session

Bimolecular collisions – reactive hard spheres ($A + B \rightarrow \text{Products}$)

- $v_{AB} = v$ and $d = \frac{1}{2}(d_A + d_B)$
- decomposed into v_{\parallel} and v_{\perp}
- angle θ between v and v_{\perp}
- only v_{\perp} can drive reaction
- only $E_{\perp} = \frac{1}{2}\mu v_{\perp}^2$ relevant
- introduced **impact parameter** b
- smaller $b \rightarrow$ larger v_{\perp}



Recap from last session

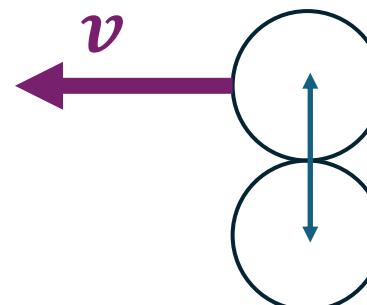
Bimolecular collisions – reactive hard spheres ($A + B \rightarrow \text{Products}$)

- $v_{AB} = v$ and $d = \frac{1}{2}(d_A + d_B)$

- introduced *impact parameter* b

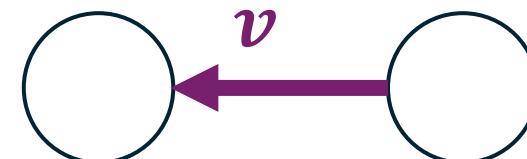
- $b > d \rightarrow$ no reaction ☹

as no component of energy directed
towards collision partner



- $b = 0 \rightarrow$ head-on-collision! ☺

all the energy directed towards collision partner



Recap from last session

Bimolecular collisions – reactive hard spheres ($A + B \rightarrow \text{Products}$)

- $v_{AB} = v$ and $d = \frac{1}{2}(d_A + d_B)$

- introduced *impact parameter* b

- smaller $b \rightarrow$ larger v_{\perp}

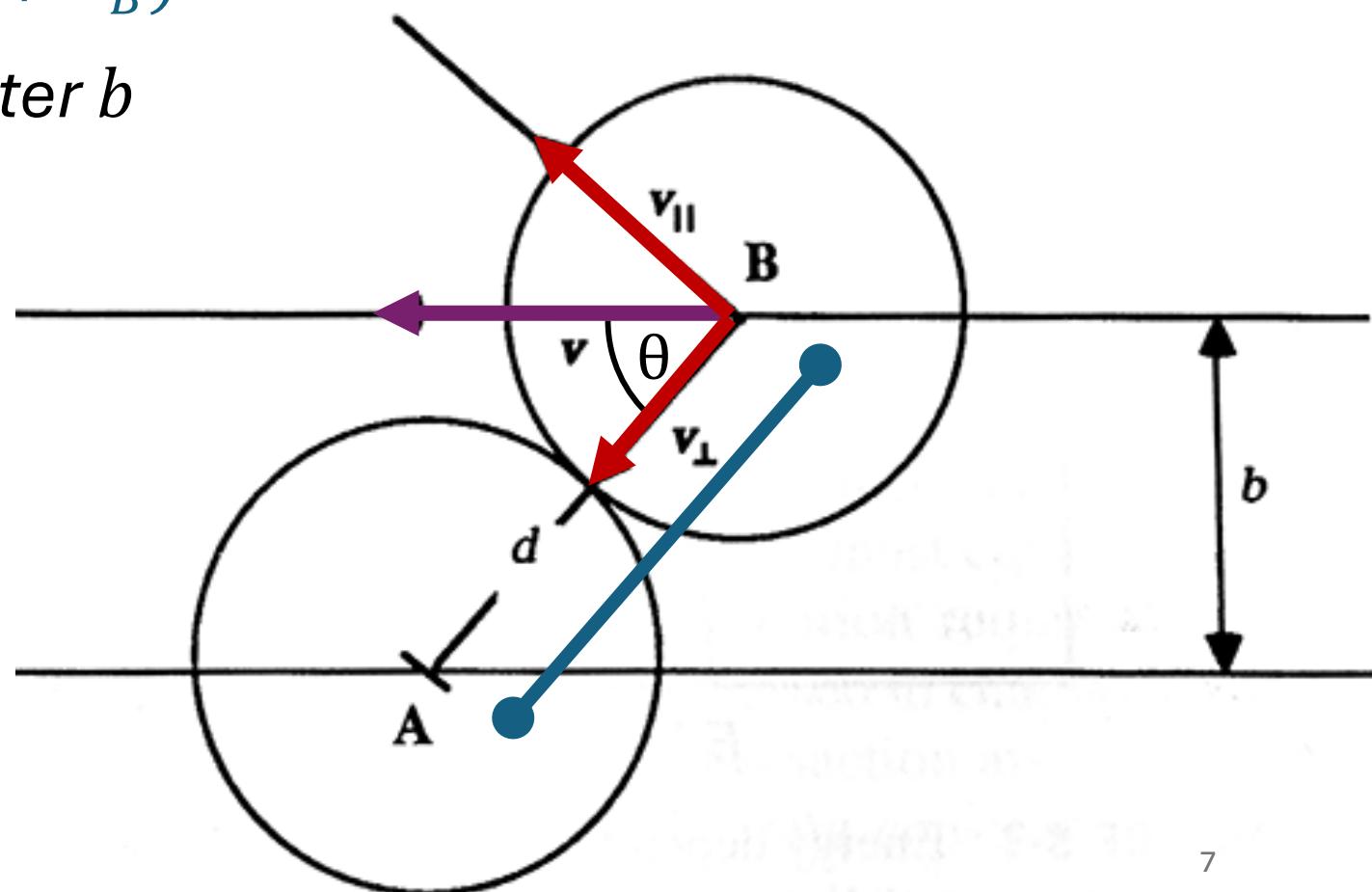
- Energy fraction is

$$\frac{E_{\perp}}{E} = \frac{v_{\perp}^2}{v^2} = \cos^2 \theta$$

$$= 1 - \sin^2 \theta = 1 - \frac{b^2}{d^2}$$

- isolating for E_{\perp} yields

$$E_{\perp} = E \left(1 - \frac{b^2}{d^2} \right) \stackrel{!}{\geq} E^*$$



- For a collision, we need a minimum energy E^*

so

$$E_{\perp} = E \left(1 - \frac{b^2}{d^2} \right) \stackrel{!}{\geq} E^*$$

- The reaction probability then is:

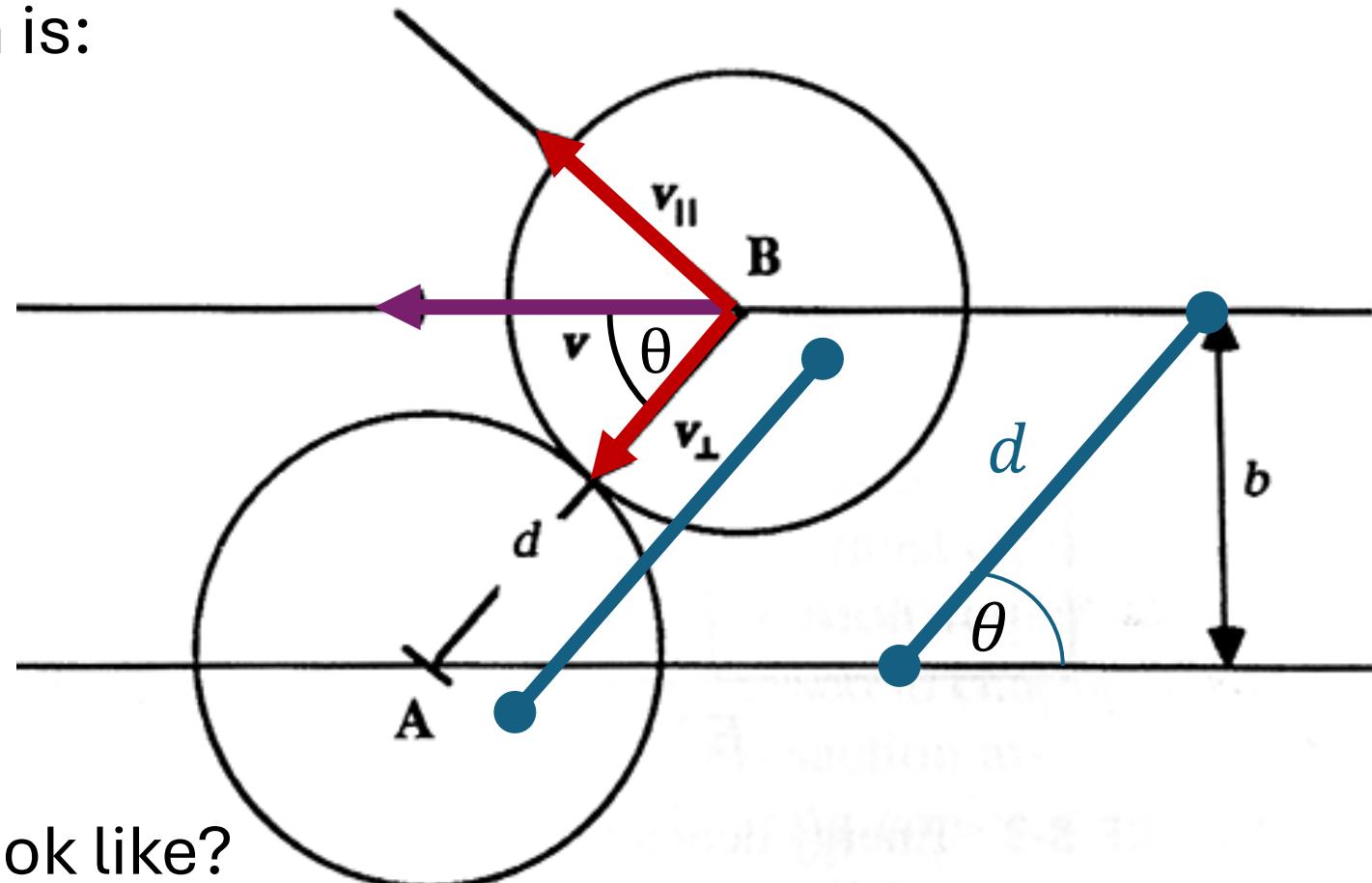
$$P_R(E_{\perp}) = \begin{cases} 0 & \text{if } E_{\perp} < E^* \\ p & \text{if } E_{\perp} \geq E^* \end{cases}$$

- The probability p we can call

the **steric factor**

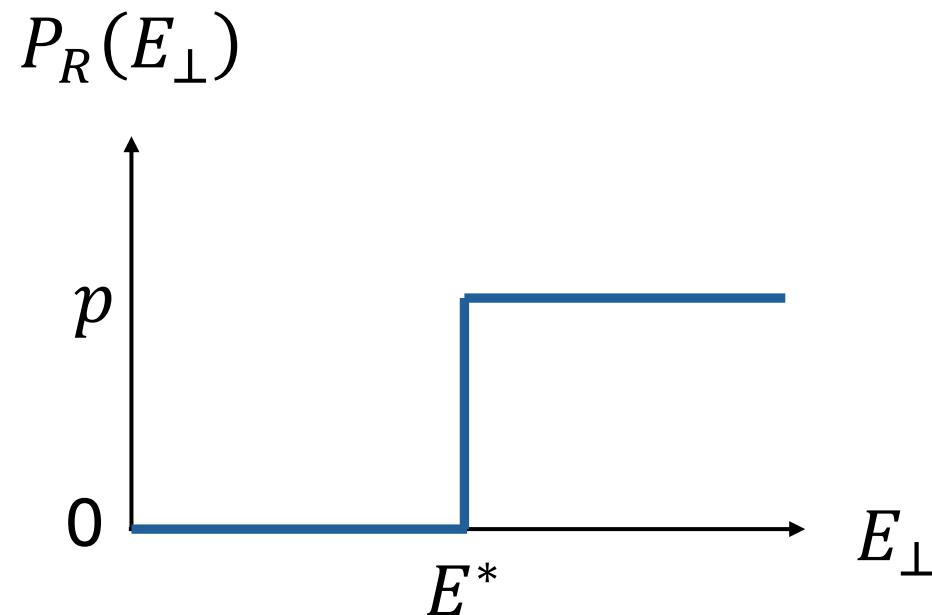
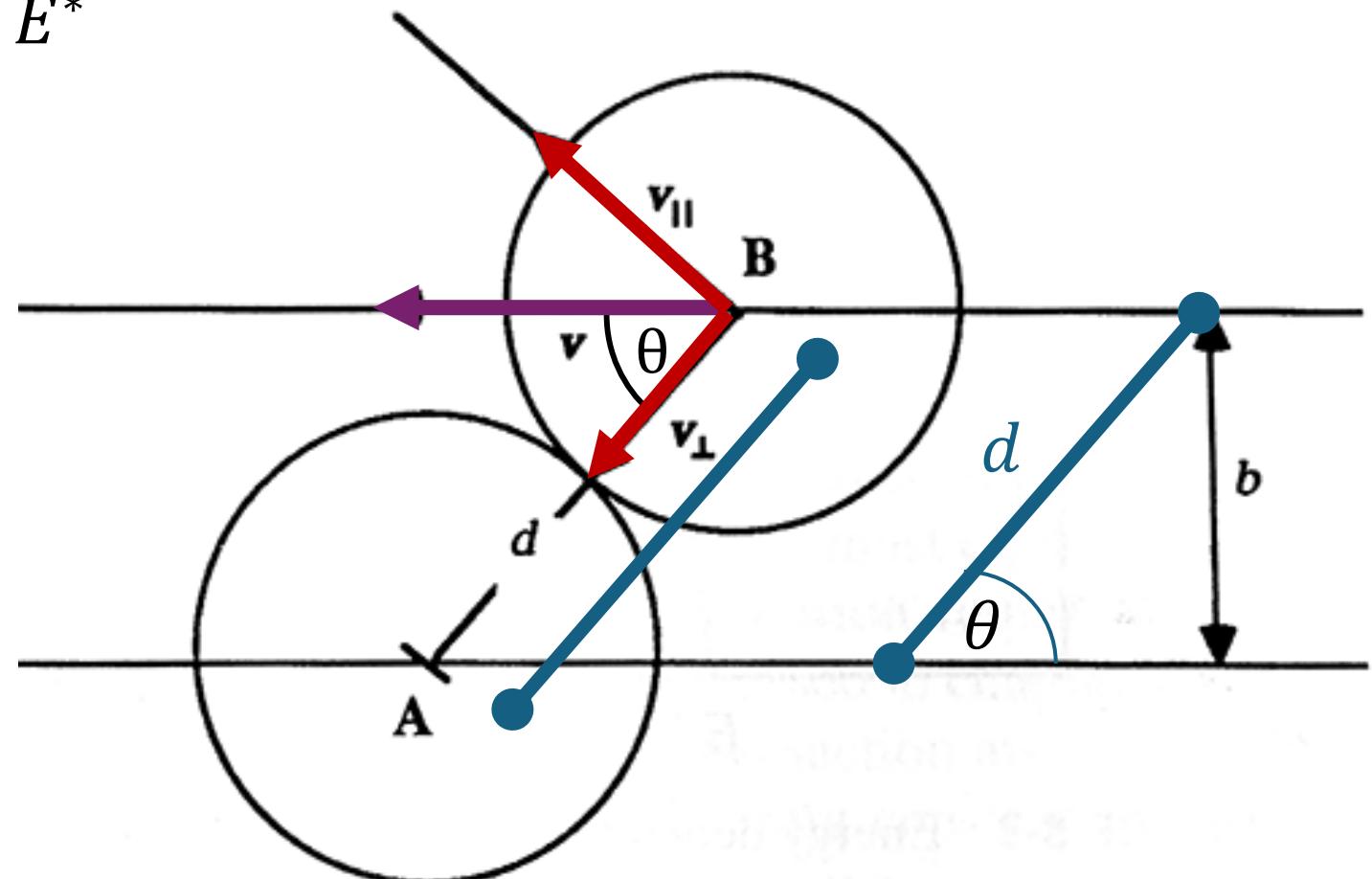
(like a fit parameter)

- How does a plot of $P_R(E_{\perp})$ look like?



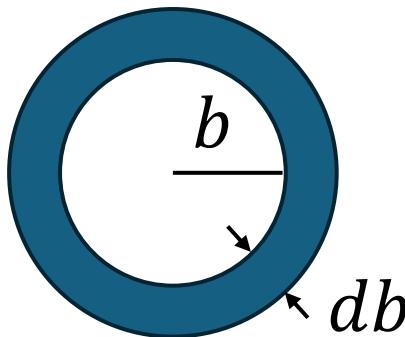
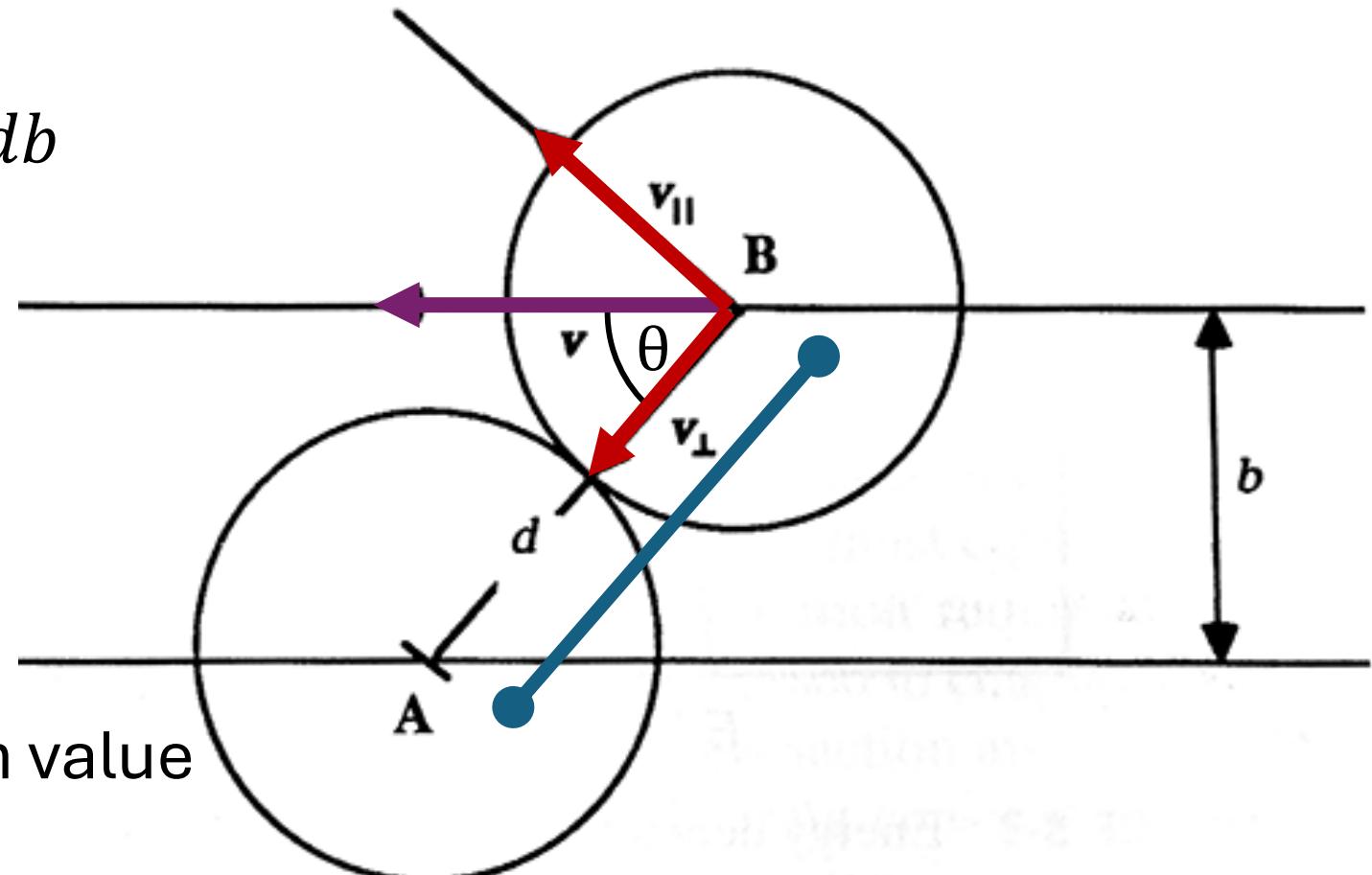
$$E_{\perp} = E \left(1 - \frac{b^2}{d^2} \right) \stackrel{!}{\geq} E^*$$

$$P_R(E_{\perp}) = \begin{cases} 0 & \text{if } E_{\perp} < E^* \\ p & \text{if } E_{\perp} \geq E^* \end{cases}$$



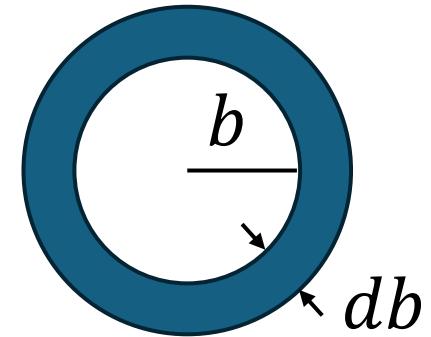
does not look super realistic,
but it's a start...

- Let's define a *reaction cross section* $\sigma_R(E)$, taking into account the necessary energy and b for a reactive collision:
- $\sigma_R(E)$ can be understood as surface area A of an infinitesimally thin ring with: $A = 2\pi b \, db$ with radius b and thickness db



- A reaction occurs only, if b not larger than a maximum value

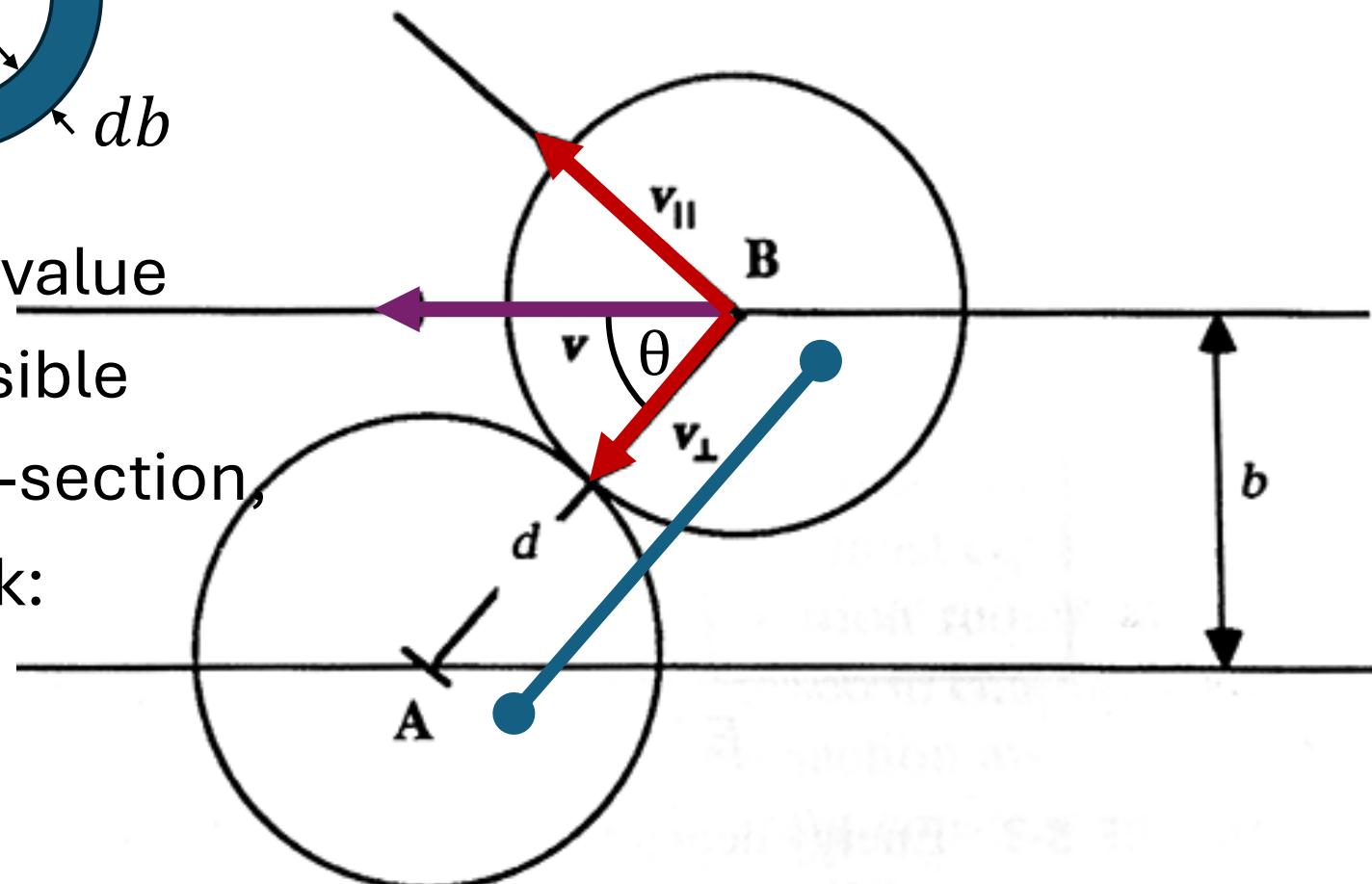
- $\sigma_R(E)$ can be understood as surface area A of an infinitesimally thin ring with: $A = 2\pi b \, db$



- A reaction occurs only, if b not larger than a maximum value
- Integrating over all these possible b 's gives us the reaction cross-section, i.e., the surface area of the disk:

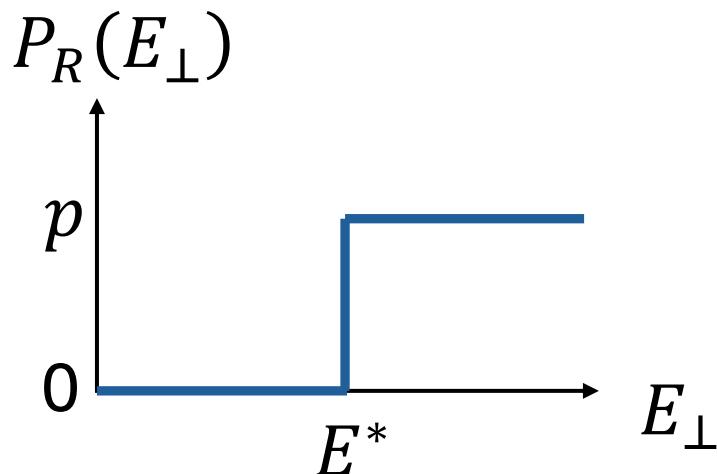
$$\sigma_R(E) = \int_0^{b,\max} 2\pi b \, db \quad \text{or}$$

$$\sigma_R(E) = \int_0^{\infty} P_R(E_{\perp}) \cdot 2\pi b \, db$$



$$\sigma_R(E) = \int_0^\infty P_R(E_\perp) \cdot 2\pi b \, db$$

reaction cross-section for
reactive hard spheres



- From $E_\perp = E \left(1 - \frac{b^2}{d^2}\right) \geq E^*$ follows $b \leq d \sqrt{1 - \frac{E^*}{E}} = b_{max}$
- inserting as new integral boundary yields

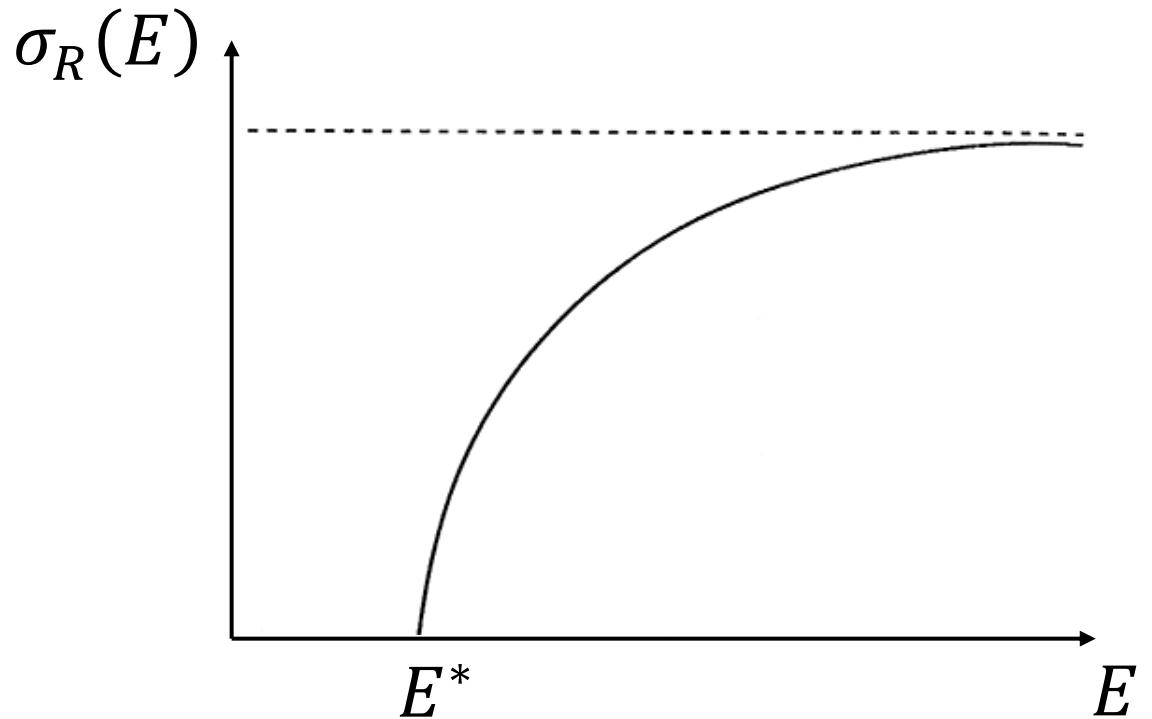
$$\sigma_R(E) = \int_0^{d\sqrt{1-\frac{E^*}{E}}} p \cdot 2\pi b db = \pi d^2 p \left(1 - \frac{E^*}{E}\right)$$

or more generally:

$$\sigma_R(E) = \begin{cases} 0 & \text{if } E < E^* \\ \pi d^2 p \left(1 - \frac{E^*}{E}\right) & \text{if } E \geq E^* \end{cases}$$

$$\sigma_R(E) = \begin{cases} 0 & \text{if } E < E^* \\ \pi d^2 p \left(1 - \frac{E^*}{E}\right) & \text{if } E \geq E^* \end{cases}$$

- How does a plot of this look?



**for large E, we approach hard-sphere model!
(multiplied with steric correction factor) ☺**

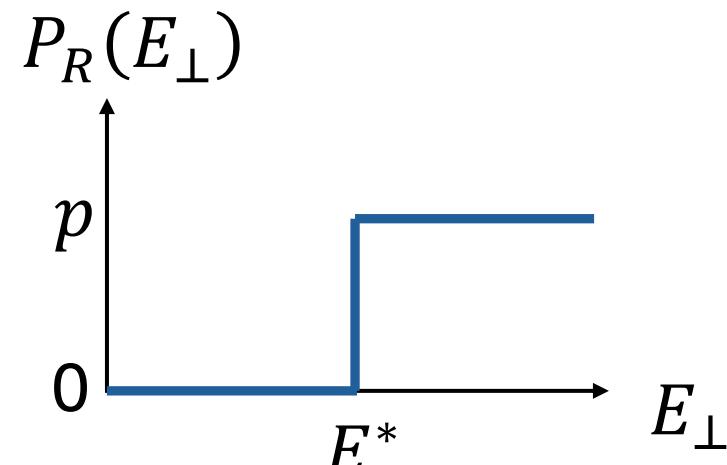


What does this limit mean?

Hard-sphere
collision cross-
section

×
Steric factor
(probability <1) p

$$\sigma_R(E) = \begin{cases} 0 & \text{if } E < E^* \\ \pi d^2 p \left(1 - \frac{E^*}{E}\right) & \text{if } E \geq E^* \end{cases}$$



- How do we get to the desired rate constant $k(T)$?
- How are relative energies distributed for such collisions?
- To obtain $k(T) = \langle \sigma_R(E) \nu(E) \rangle$
we average over the thermal population, given by M.B. distribution $F(\nu)$
of *relative speeds* from before:

$$k(T) = \int_0^\infty \sigma_R(E) \nu \cdot F(\nu) d\nu = \int_0^\infty \sigma_R(E) \nu \cdot 4\pi \left(\frac{\mu}{2\pi k_B T}\right)^{\frac{3}{2}} \nu^2 e^{-\frac{\mu\nu^2}{2k_B T}} d\nu$$

- What do we first have to do to solve this?
- bring all to same dependence, so coordinate transform of ν to E

$$\sigma_R(E) = \begin{cases} 0 & \text{if } E < E^* \\ \pi d^2 p \left(1 - \frac{E^*}{E}\right) & \text{if } E \geq E^* \end{cases}$$

$$k(T) = \int_0^\infty \sigma_R(E) v \cdot F(v) dv = \int_0^\infty \sigma_R(E) v \cdot 4\pi \left(\frac{\mu}{2\pi k_B T}\right)^{\frac{3}{2}} v^2 e^{-\frac{\mu v^2}{2k_B T}} dv$$

- What do we first have to do to solve this?
- bring all to same dependence, so transformation of v to E
- use $E = \frac{1}{2}\mu v^2$ and $dv = \frac{dE}{\mu v}$ to obtain

$$\begin{aligned} k(T) &= \frac{1}{k_B T} \left(\frac{8}{\pi \mu k_B T}\right)^{\frac{1}{2}} \int_0^\infty E \sigma_R(E) e^{-\frac{E}{k_B T}} dE \\ &= \frac{1}{k_B T} \left(\frac{8}{\pi \mu k_B T}\right)^{\frac{1}{2}} \int_{E^*}^\infty \pi d^2 p (E - E^*) e^{-\frac{E}{k_B T}} dE \quad (\text{for } E < E^*, \\ &\quad \sigma_R(E) \text{ is zero}) \end{aligned}$$

$$k(T) = \frac{1}{k_B T} \left(\frac{8}{\pi \mu k_B T} \right)^{\frac{1}{2}} \int_{E^*}^{\infty} \pi d^2 p (E - E^*) e^{-\frac{E}{k_B T}} dE$$

- integration, using $\int_0^{\infty} x e^{-\frac{x}{a}} dx = a^2$ yields

$$k(T) = \frac{\pi d^2}{6} \left(\frac{8k_B T}{\pi \mu} \right)^{\frac{1}{2}} p e^{-\frac{E^*}{k_B T}}$$

What do these terms mean?

hard-sphere cross section \times mean velocity \times Arrhenius eq.

- Arrhenius pre-factor A now has become a product of correction terms, incl. steric factor $p < 1$, accounting for the fact that even at sufficient energy, not every collision might be reactive due to geometric limitations of molecular orientations

5.7 Dynamics of Bimolecular Reactions – Two-Body Classical Scattering

- Question: At what *angle* do collision partners depart after a collision?
- Or in c.m. frame: At what angle does the pseudo-particle exit the horizontal line?
- We want to become more precise in not just knowing the reaction cross section overall, but also *for a specific angle*
- Why might this extra complication be a useful thing to know?

Because reaction *mechanisms* can often be derived by knowing these angles!!!

→ Let's derive ***differential*** reaction cross-sections as function of angle

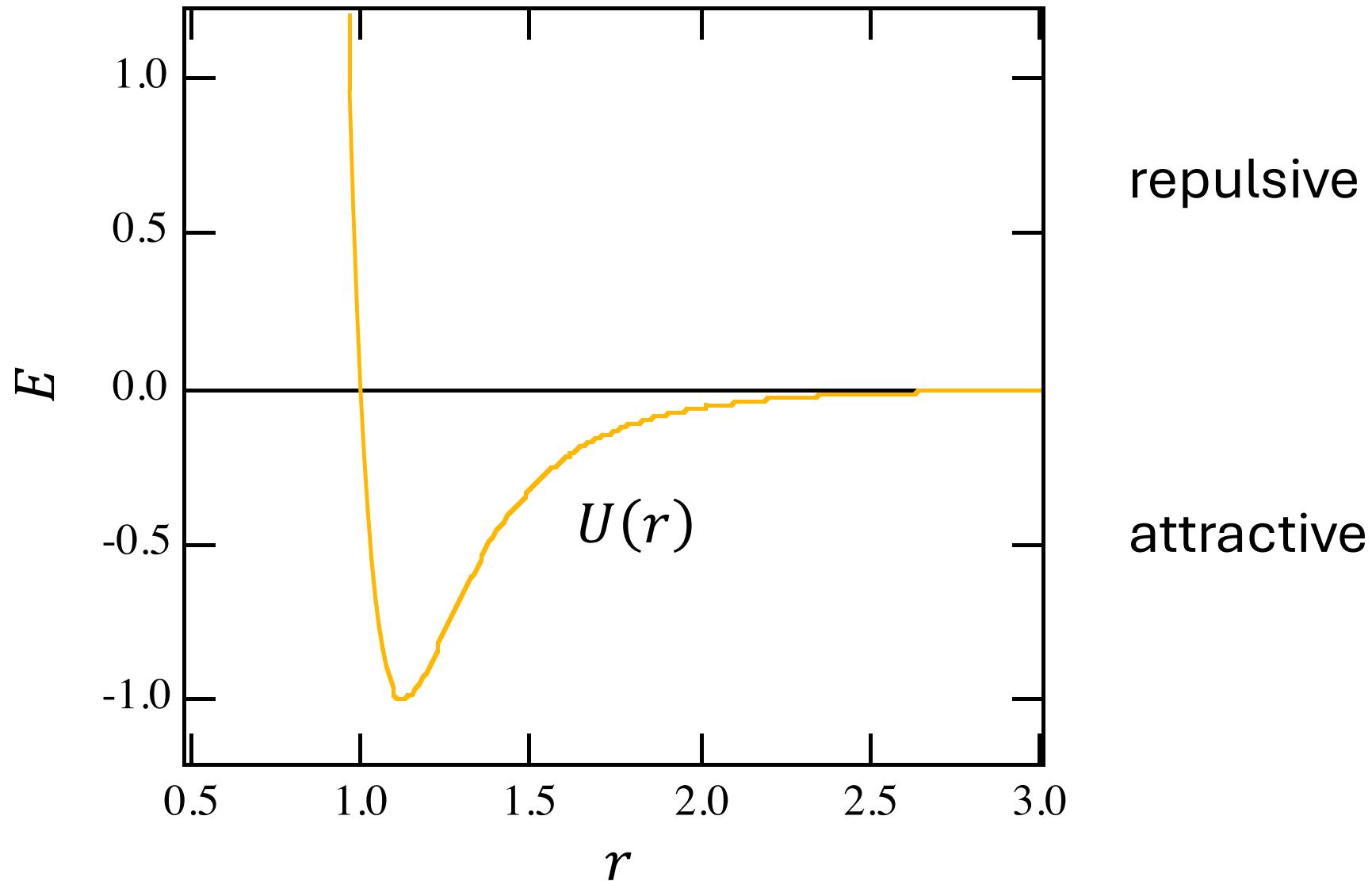
- We assume particles A & B collide and use the center of mass frame
- assume they *interact* through a *central potential* $U(r)$
- r is distance between particles

- total energy of collision partners is sum of kinetic, potential and internal energy:

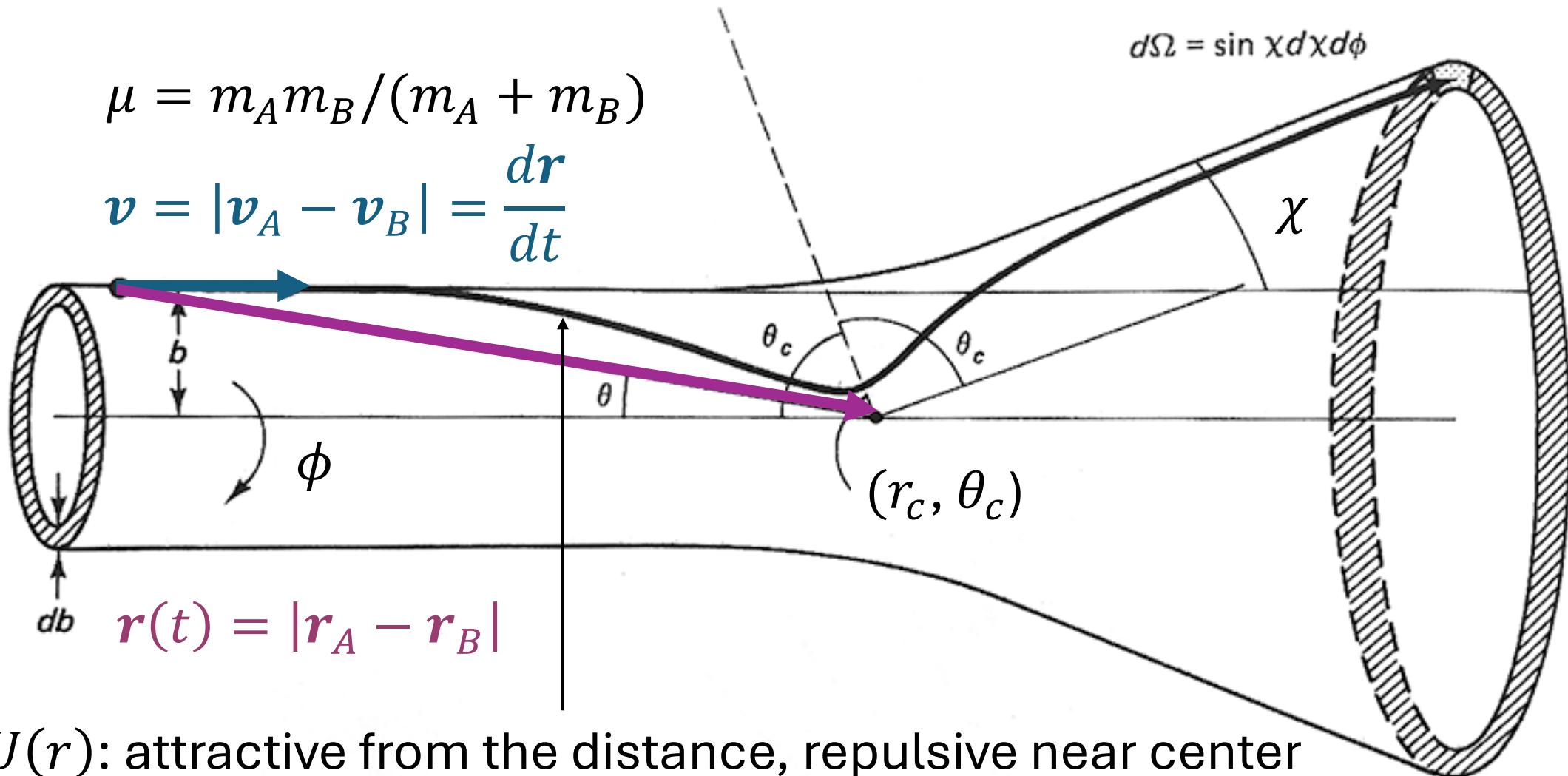
$$E = \frac{1}{2}mv_A^2 + \frac{1}{2}mv_B^2 + U(r) + E_{A, \text{ internal}} + E_{B, \text{ internal}}$$

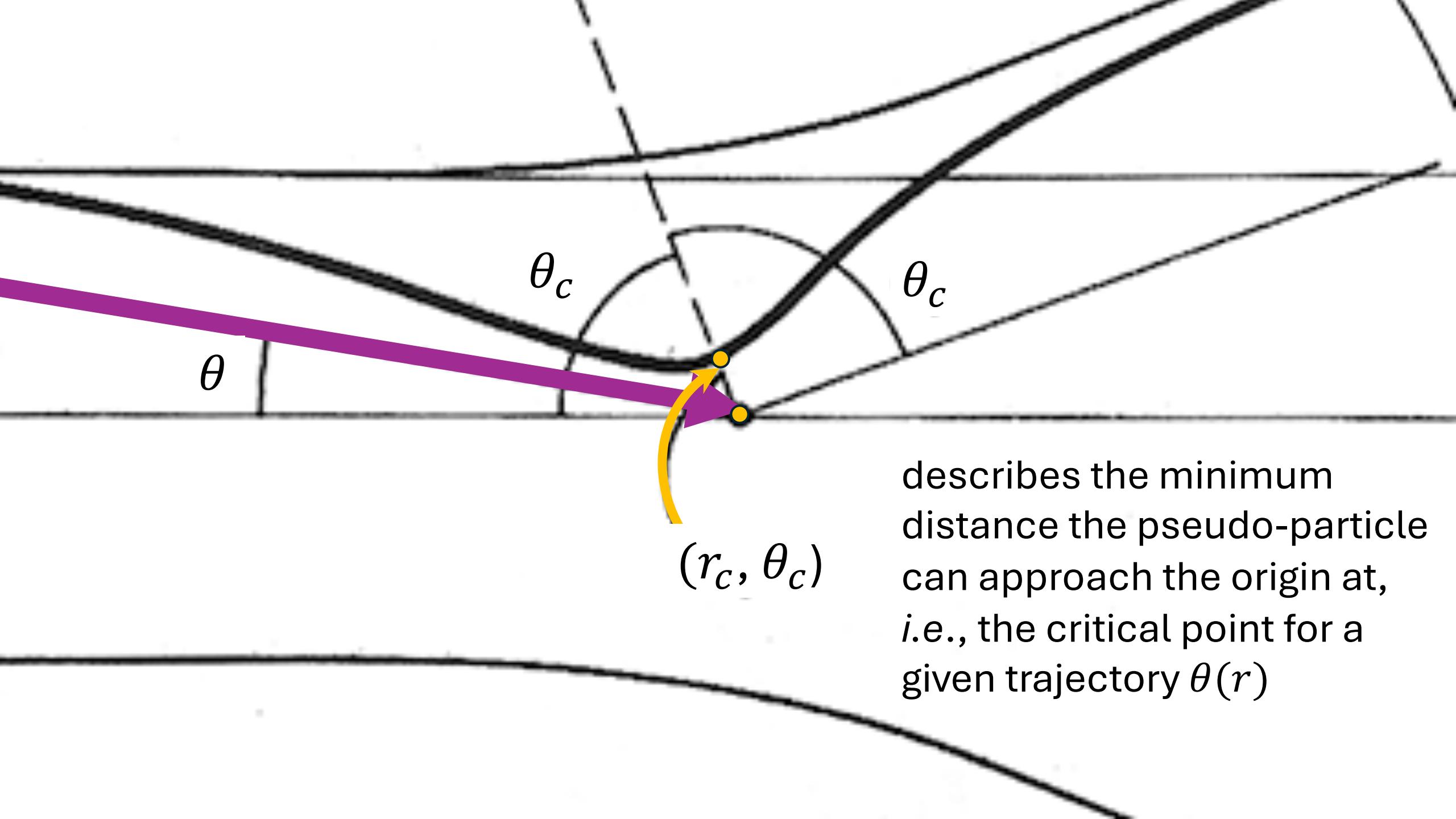
- we can distinguish *elastic*, *inelastic*, and *reactive* collisions
- How could an interaction potential look like?

A possible (typical) central potential $U(r)$



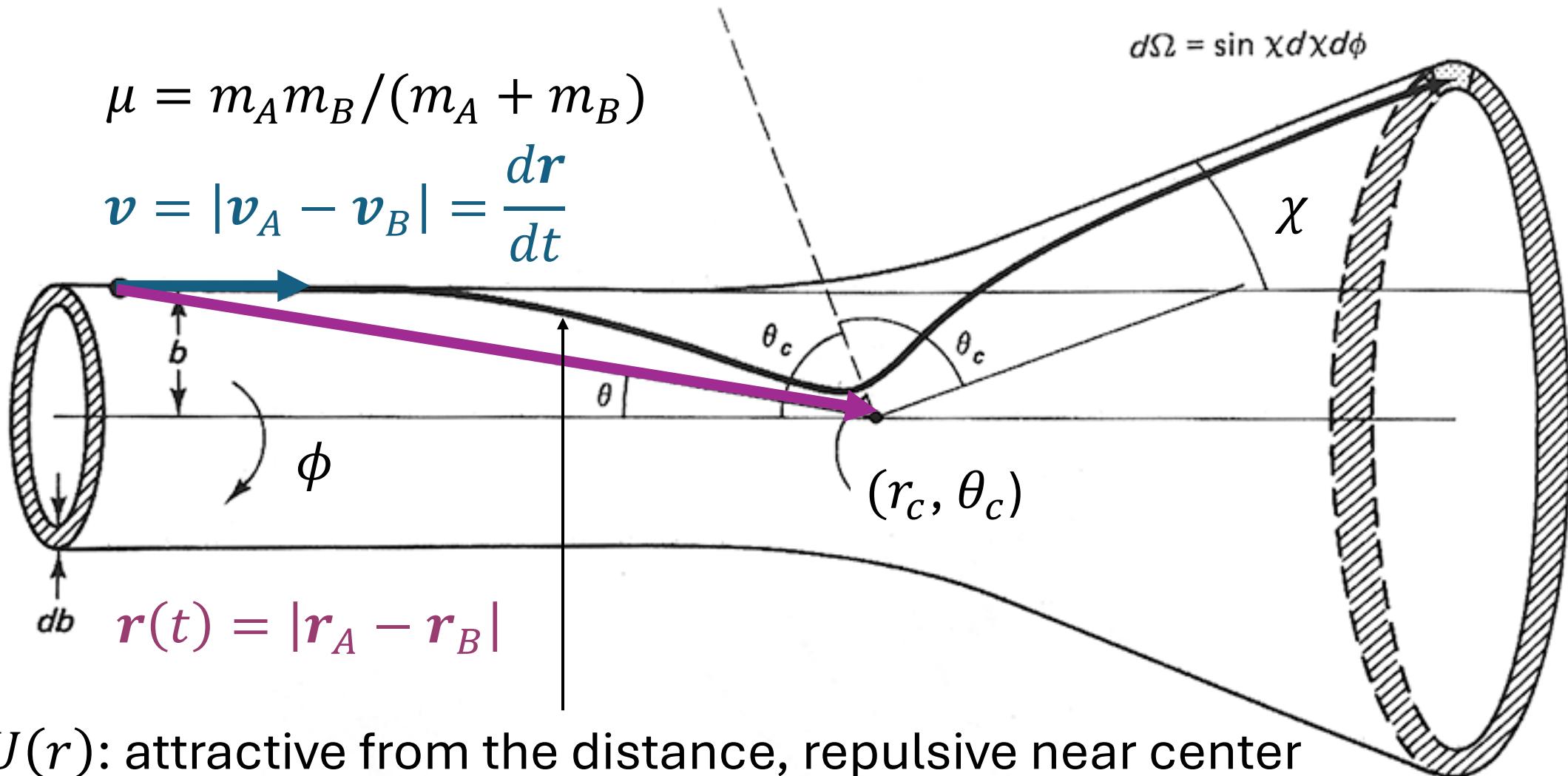
- Fixed center of mass coordinate system, central spherical potential $U(r)$
- Before collision: assume particles approach from infinite distance





describes the minimum distance the pseudo-particle can approach the origin at, i.e., the critical point for a given trajectory $\theta(r)$

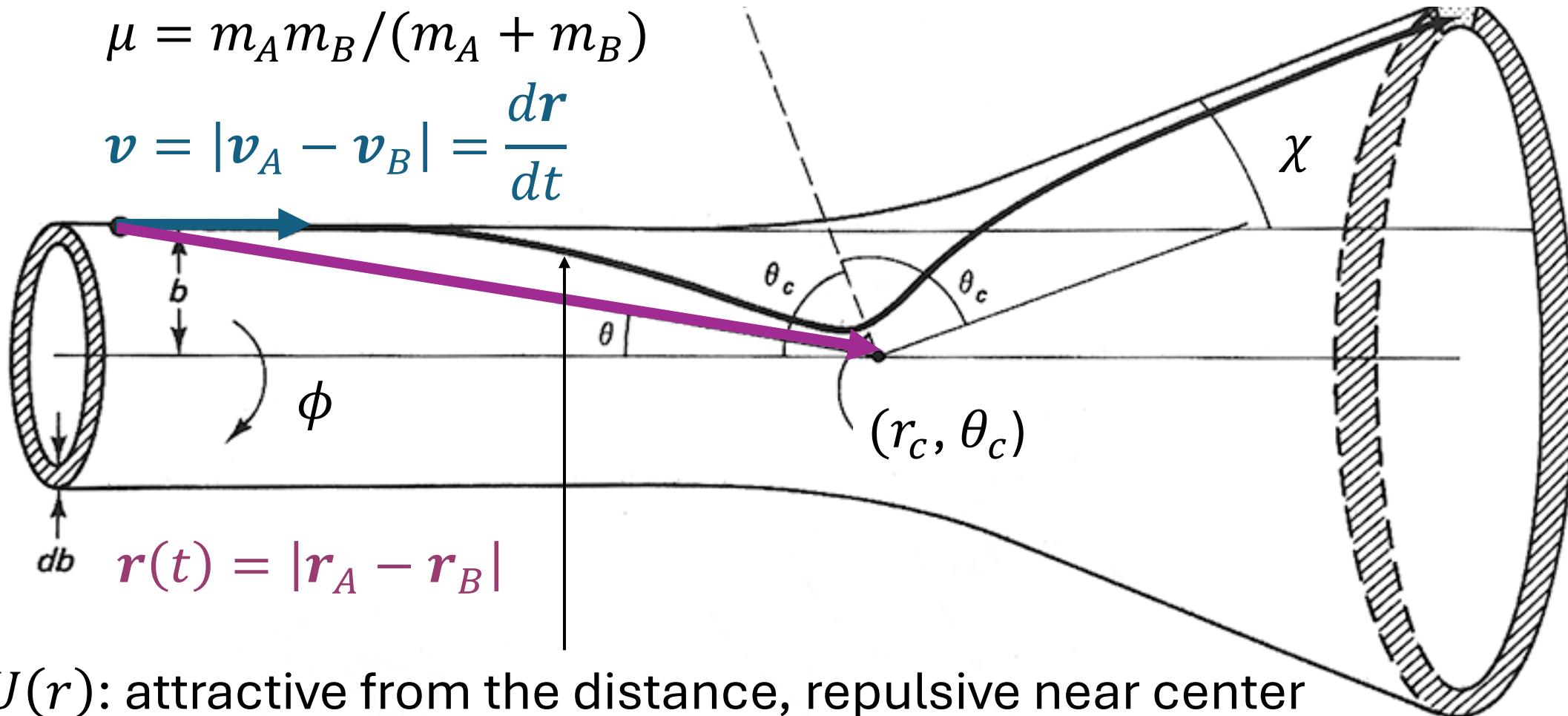
- Fixed center of mass coordinate system, central *spherical* potential $U(r)$
- Before collision: assume particles approach from infinite distance



- The radial velocity at the critical point is: $\dot{r}_{r=r_c} = 0$
- So don't have radial velocity here, only tangential velocity
- Trajectory (like potential $U(r)$) is *symmetrical* around center

$$\mu = m_A m_B / (m_A + m_B)$$

$$v = |\mathbf{v}_A - \mathbf{v}_B| = \frac{d\mathbf{r}}{dt}$$

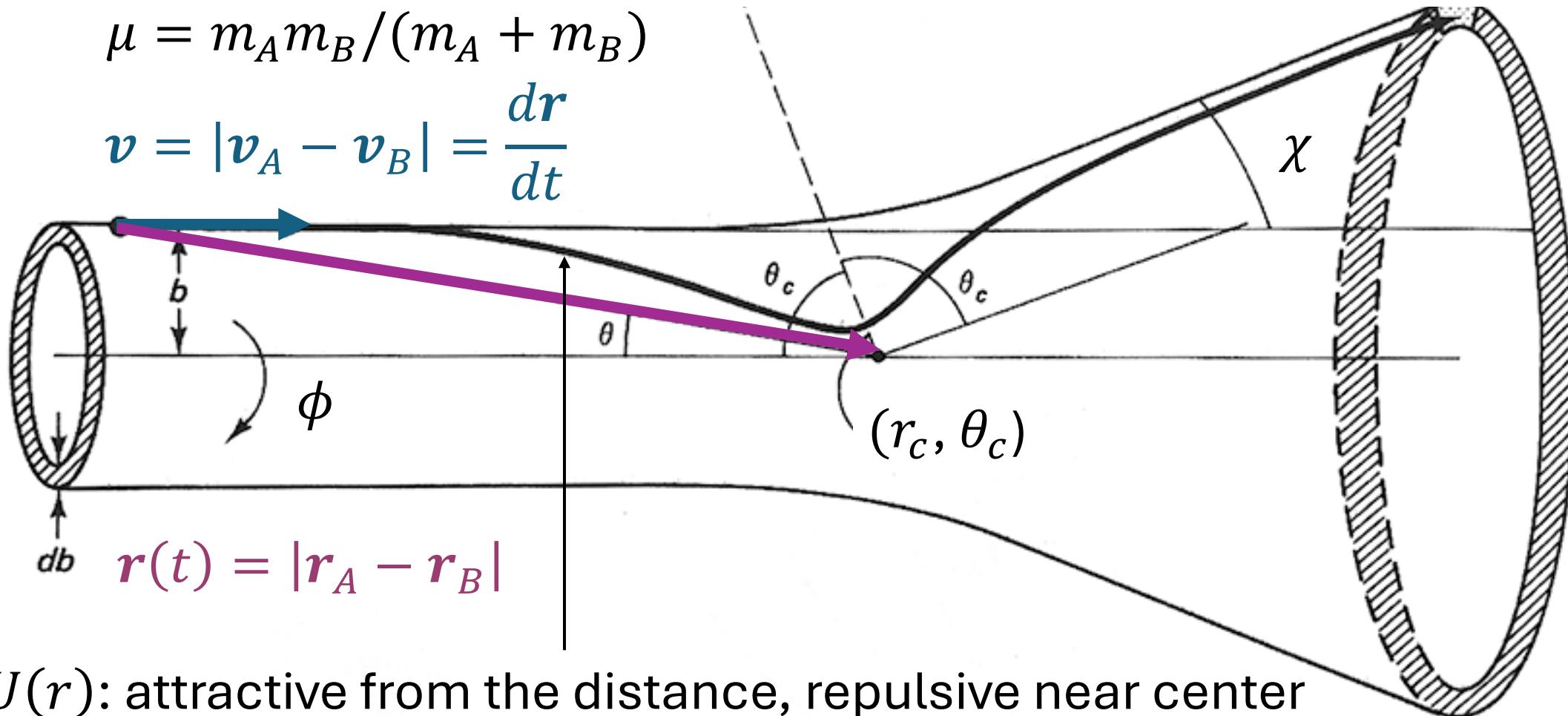


$U(r)$: attractive from the distance, repulsive near center

- What about azimuthal angle ϕ ?
- but we got a *spherical* potential $U(r)$
- ϕ does not change during scattering, as trajectory confined to a *plane*! ☺

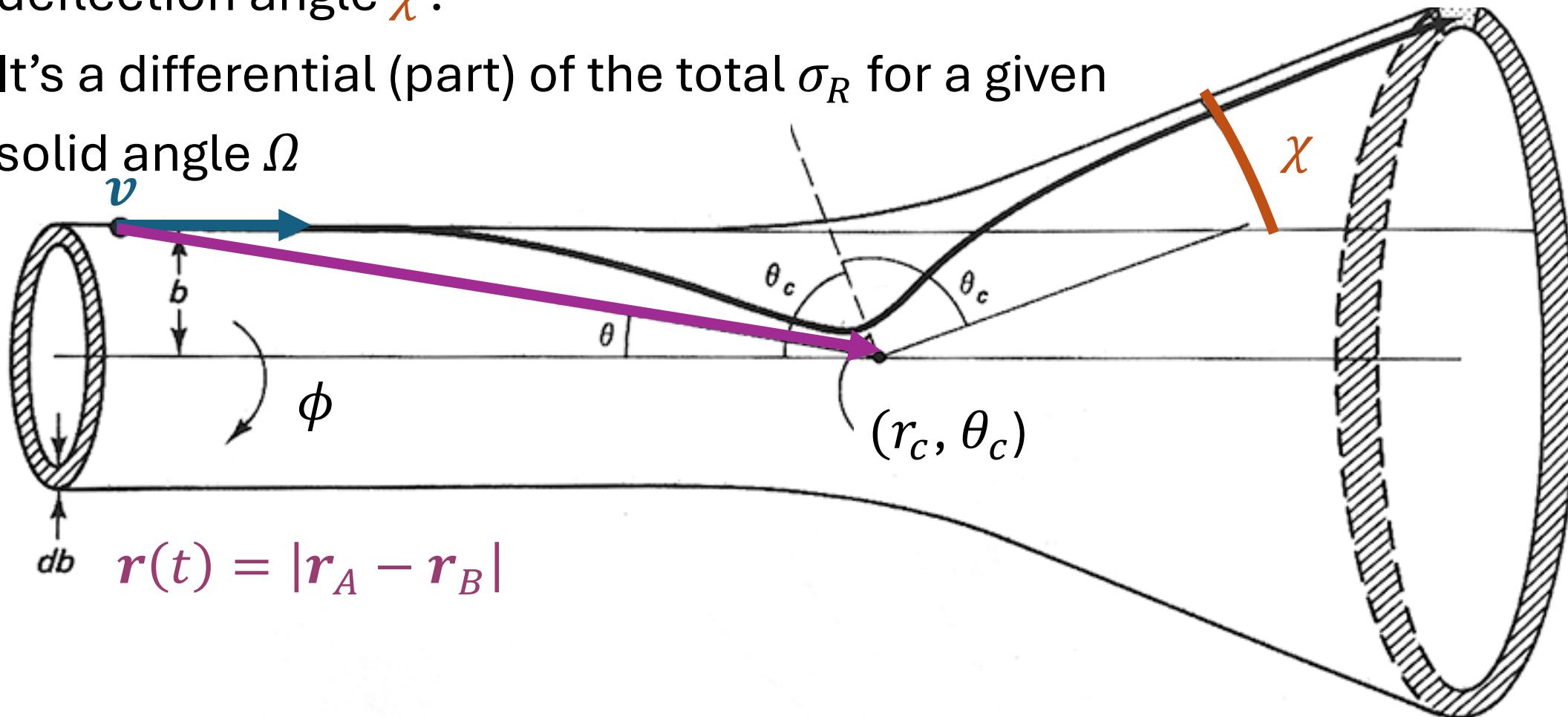
$$\mu = m_A m_B / (m_A + m_B)$$

$$v = |\mathbf{v}_A - \mathbf{v}_B| = \frac{d\mathbf{r}}{dt}$$

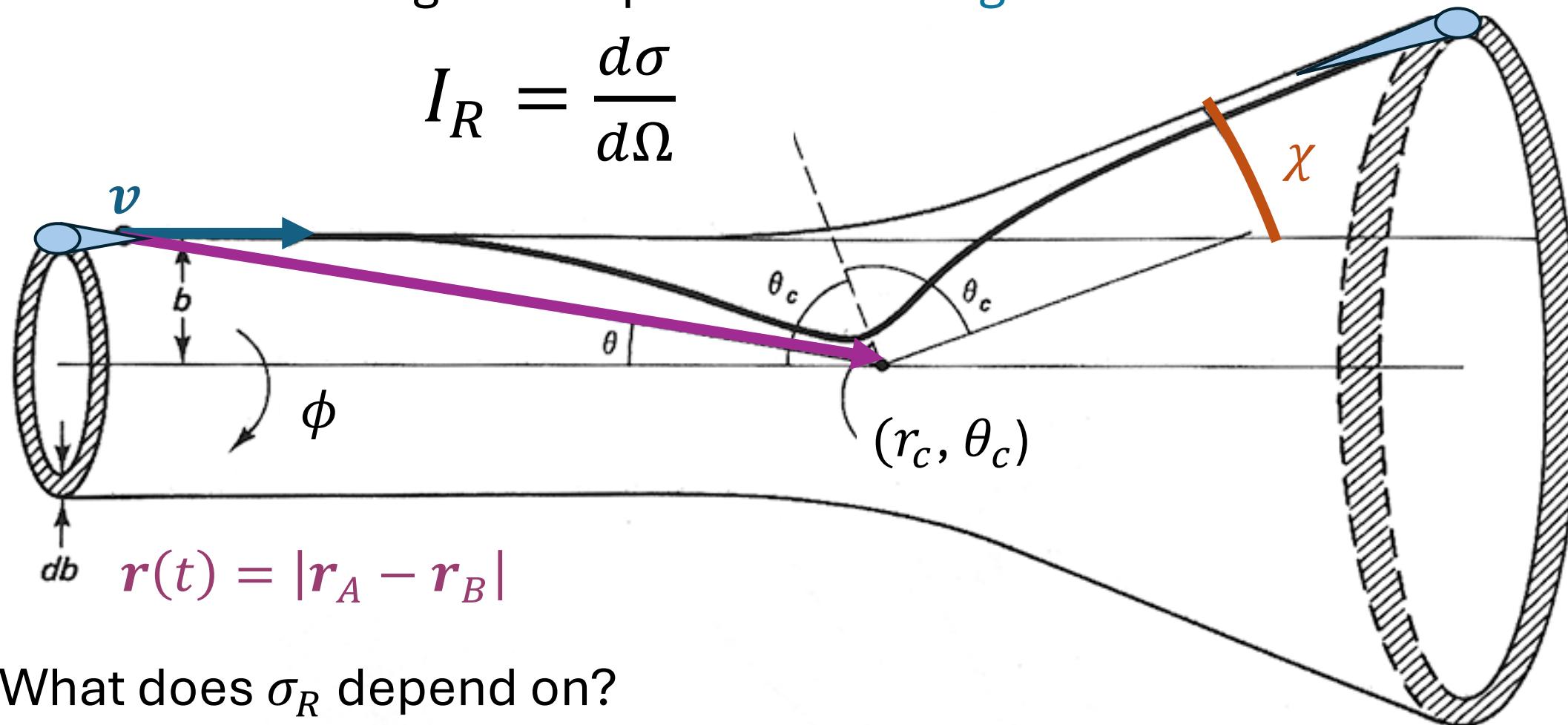


$U(r)$: attractive from the distance, repulsive near center

- Deflection angle χ will be relevant to derive differential cross-section
- From before: (total) reaction cross-section σ_R (= surface area of full disc)
- How large is the disk that will lead to scattering into one specific deflection angle χ ?
- It's a differential (part) of the total σ_R for a given solid angle Ω



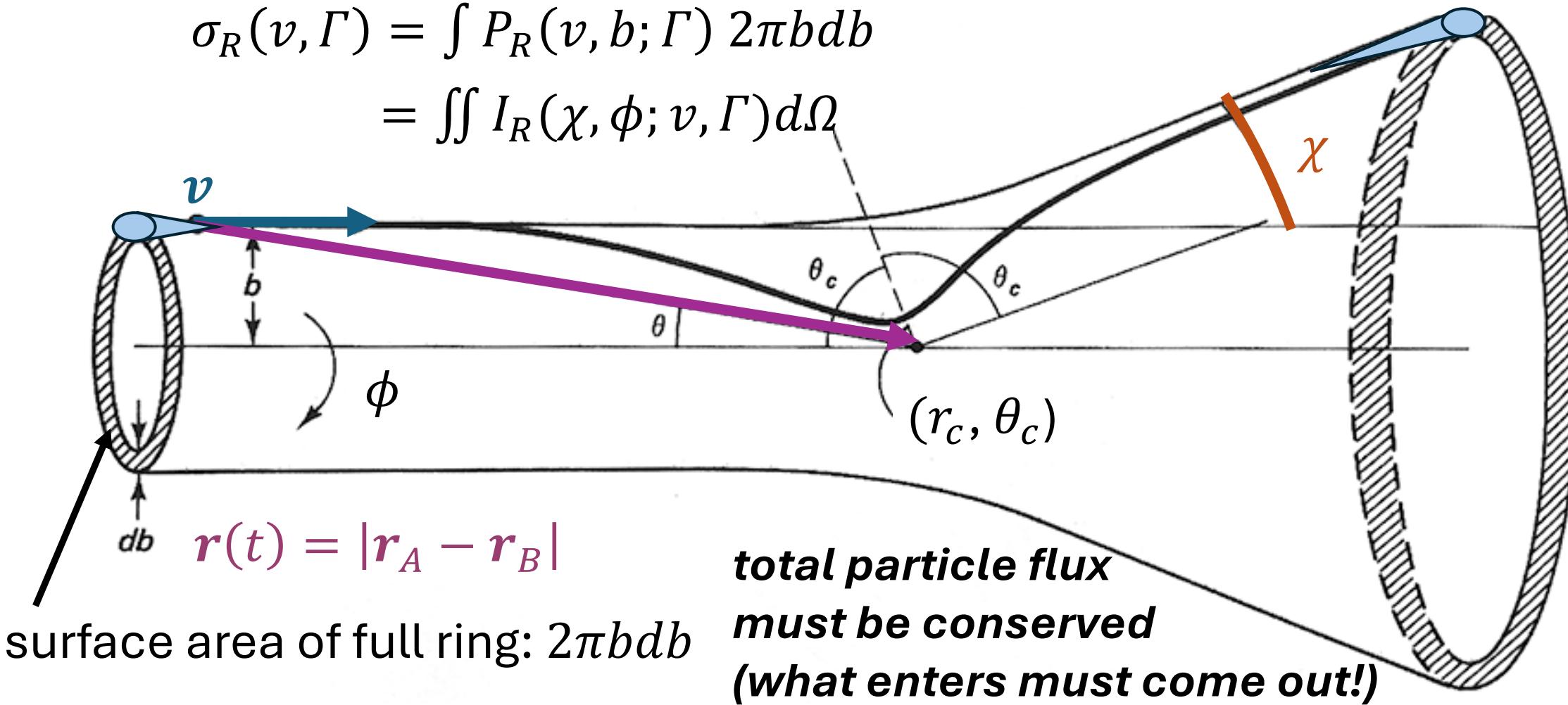
- How large is the disk that will lead to scattering into one specific deflection angle χ ?
- The *differential cross section* I_R is a differential (part) of the total σ_R that leads to scattering into a specific *solid angle* Ω :



- What does σ_R depend on?

- The *differential cross section* I_R is a differential (part) of the total σ_R that leads to scattering into a specific *solid angle* Ω : $I_R = \frac{d\sigma}{d\Omega}$
- What does σ_R depend on? Velocity v , impact param. b , quantum state (Γ)

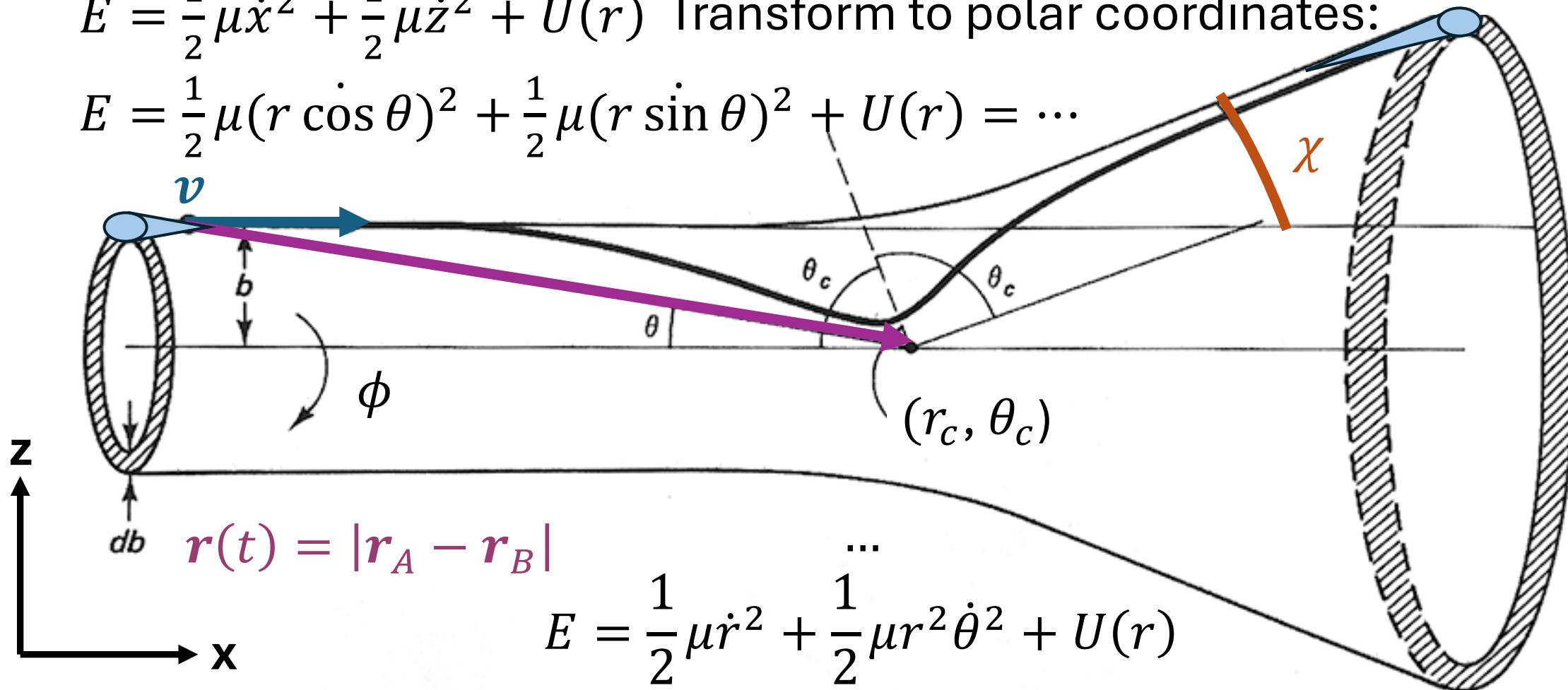
$$\begin{aligned}\sigma_R(v, \Gamma) &= \int P_R(v, b; \Gamma) 2\pi b db \\ &= \iint I_R(\chi, \phi; v, \Gamma) d\Omega\end{aligned}$$



- To derive the partial scattering cross-section I_R we need to find the *deflection function* $\chi(b)$
- Total energy of particle (Cartesian coordinates) moving in xz plane is:

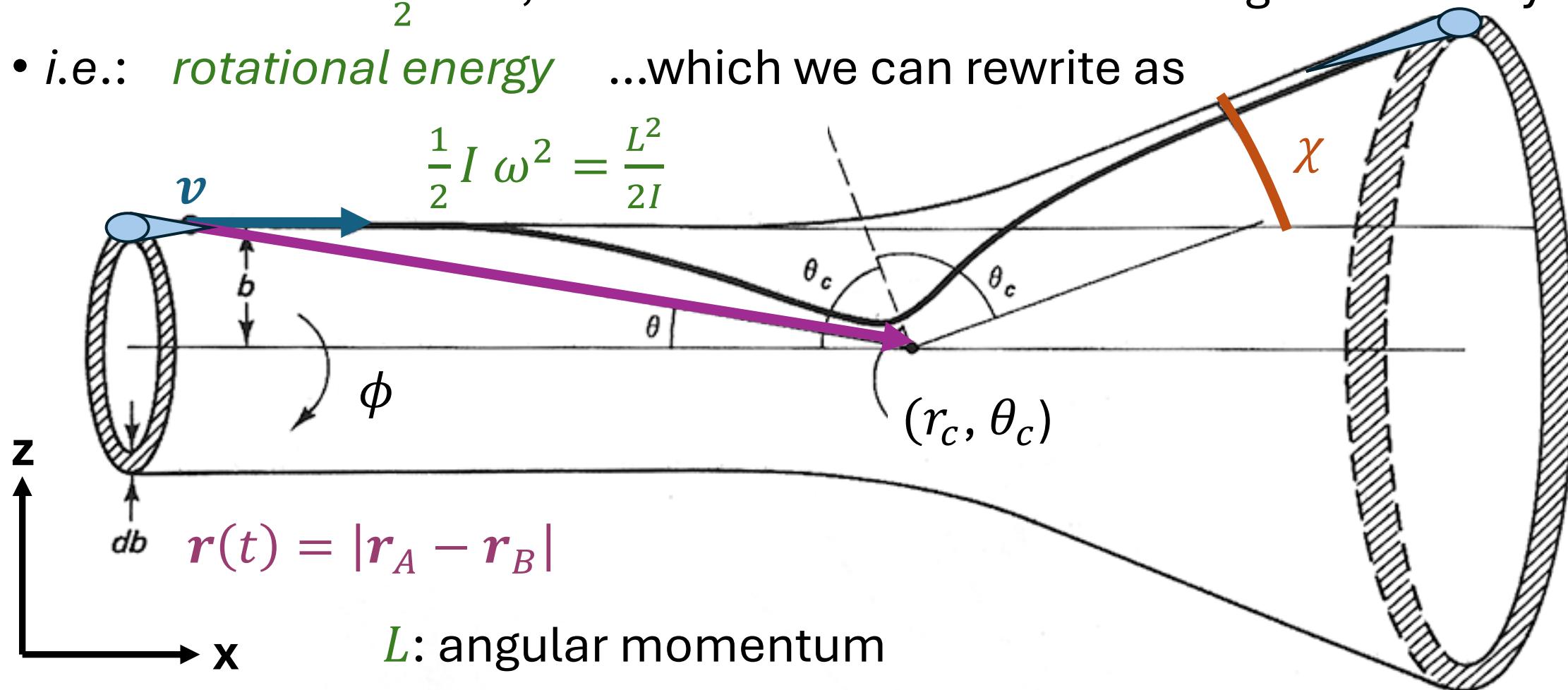
$$E = \frac{1}{2}\mu\dot{x}^2 + \frac{1}{2}\mu\dot{z}^2 + U(r) \text{ Transform to polar coordinates:}$$

$$E = \frac{1}{2}\mu(r \cos \theta)^2 + \frac{1}{2}\mu(r \sin \theta)^2 + U(r) = \dots$$



$$E = \frac{1}{2}\mu\dot{r}^2 + \frac{1}{2}\mu r^2\dot{\theta}^2 + U(r) \quad \text{What are the different parts of this sum?}$$

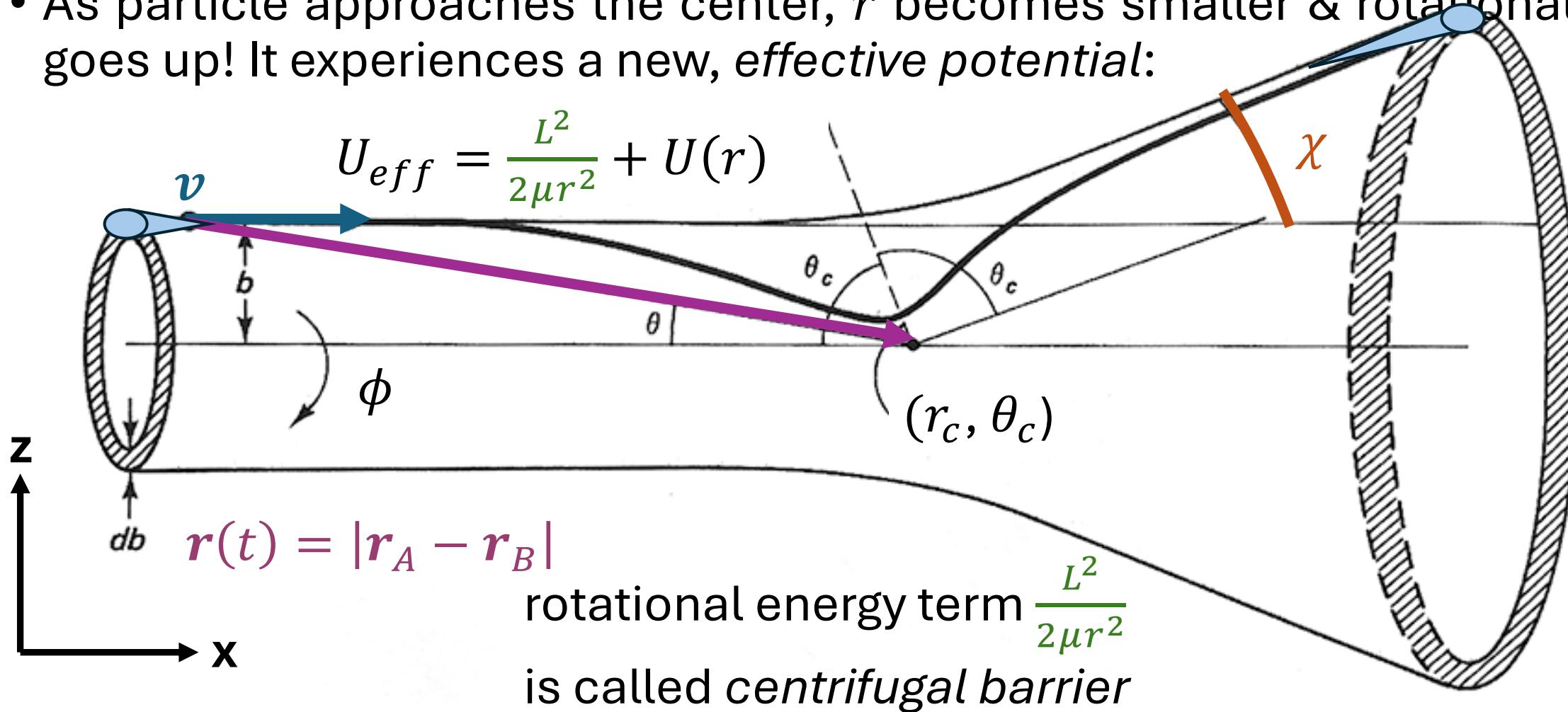
- radial kin. energy & angular motion associated energy (& potential energy)
- or could write: $\frac{1}{2}I\omega^2$, with moment of inertia I & angular velocity ω
- i.e.: *rotational energy* ...which we can rewrite as



$$E = \frac{1}{2}\mu\dot{r}^2 + \frac{1}{2}\mu r^2\dot{\theta}^2 + U(r) \quad \text{we can rewrite as}$$

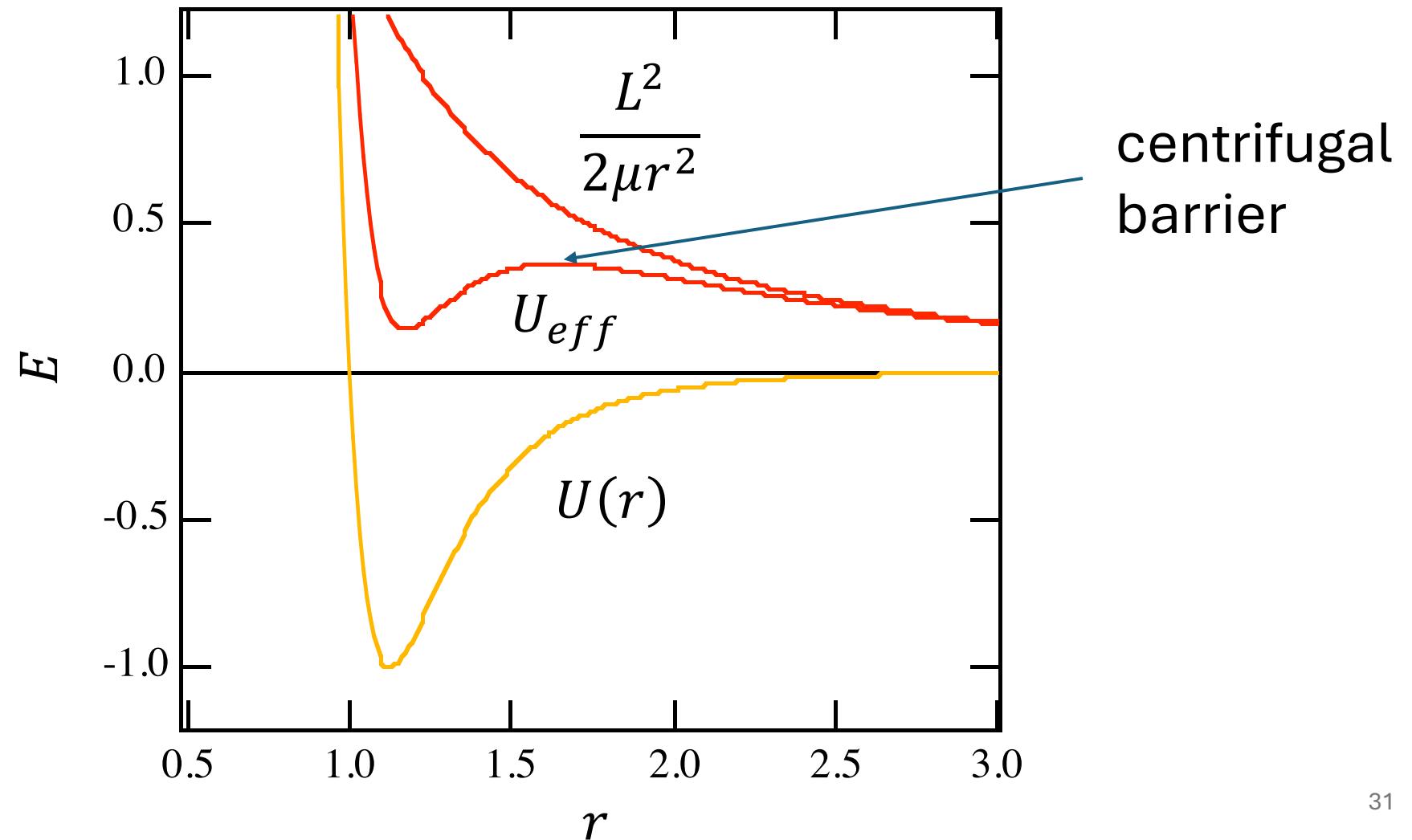
$$E = \frac{1}{2}\mu v^2 + \frac{L^2}{2\mu r^2} + U(r), L \text{ is a const., as angular momentum is conserved}$$

- As particle approaches the center, r becomes smaller & rotational energy goes up! It experiences a new, *effective potential*:



$$U_{eff} = \frac{L^2}{2\mu r^2} + U(r)$$

- How do $U(r)$ and U_{eff} look plotted?



$$E = \frac{1}{2}\mu v^2 + \frac{L^2}{2\mu r^2} + U(r)$$

- How do we calculate L ?

$$L = |r \times p| \quad \text{what's the momentum?}$$

- We derive it from the incoming particle's velocity v_0 and b orthogonal to it:

$$L = |r \times p| = \mu v_0 b$$

- We want to derive the trajectory $\theta(r)$
- we can relate θ to the angular momentum:

$$L = \mu r^2 \frac{d\theta}{dt} \quad \text{rearrange to} \quad d\theta = \frac{L}{\mu r^2} dt$$

- Now let's solve the above differential equation:

$$E = \frac{1}{2}\mu \left(\frac{dr}{dt}\right)^2 + \frac{L^2}{2\mu r^2} + U(r), \text{ rearranged to}$$

$$dt = - \left[\frac{2}{\mu} \left(E - U(r) - \frac{L^2}{2\mu r^2} \right) \right]^{-\frac{1}{2}} dr \quad \text{which we can substitute into our expression for } d\theta$$

$$d\theta = -\frac{L}{\mu r^2} \left[\frac{2}{\mu} \left(E - U(r) - \frac{L^2}{2\mu r^2} \right) \right]^{-\frac{1}{2}} dr$$

- This is great. Integrating this gives us our trajectory $\theta(r)$ [and from that, we can then get our desired deflection function $\chi(b)$]
- To make life easier, one substitution is still handy to do first:
- We know that $L = \mu v_0 b$ and use $E = \frac{1}{2} \mu v_0^2$
- meaning $L = b(2\mu E)^{\frac{1}{2}}$
- Did we not over-simplify here by reducing E to just a kinetic energy term?!
- No: at infinite distance ($r \rightarrow \infty$, $v = v_0$) the potential energy is zero:

$$U(r \rightarrow \infty) = 0$$

moreover, the rotational energy must be zero: $\frac{L^2}{2\mu(r \rightarrow \infty)^2} = 0$

- Substitution of this L expression yields

$$d\theta = -b \frac{dr}{r^2 \left[1 - \frac{U(r)}{E} - \frac{b^2}{r^2} \right]^{\frac{1}{2}}}$$

- Finally, we integrate this:

$$\theta(r) = \int_0^\theta d\theta = -b \int_{\infty}^r \frac{dr}{r^2 \left[1 - \frac{U(r)}{E} - \frac{b^2}{r^2} \right]^{\frac{1}{2}}}$$

- From this, we will be able to derive the deflection function and in the end, the differential scattering cross-section ... next time! ☺